Real Roots of a Polynomial

146 visualizaciones (últimos 30 días)
Philosophaie
Philosophaie el 18 de Sept. de 2013
I have used "solve" to factor a fourth order polynomial. It has four roots with three complex numbers. I used:
xf = solve(x^4+7*x^3-8*x^2+5*x+2,x)
if (isreal(xf)==1)
...
end;
to try to pull out the real roots but it did not work.
Is there a better way?
  2 comentarios
Matt Kindig
Matt Kindig el 18 de Sept. de 2013
Editada: Matt Kindig el 18 de Sept. de 2013
Are you sure there are real roots to the polynomial? It is not a given that there are.
Azzi Abdelmalek
Azzi Abdelmalek el 18 de Sept. de 2013
Polynomial with real coefficient can not have an odd number of complex roots,

Iniciar sesión para comentar.

Respuesta aceptada

Roger Stafford
Roger Stafford el 18 de Sept. de 2013
Editada: Roger Stafford el 18 de Sept. de 2013
Use 'roots' to find the roots of polynomials.
r = roots([1,7,-8,5,1]); % Get all the roots
r = r(imag(r)==0); % Save only the real roots
The 'isreal' function is true only if All elements of a vector are real, so it isn't appropriate for sorting out the real roots.
A polynomial with all real coefficients such as yours cannot have an odd number of complex roots. They must occur in conjugate pairs. As you see, in your particular polynomial there are just two complex roots, which are conjugates of one another.
  1 comentario
Philosophaie
Philosophaie el 18 de Sept. de 2013
Editada: Philosophaie el 18 de Sept. de 2013
I get:
acp1 =
[ empty sym ]
There is a real root to the polynomial in question.
It works my mistake.
Is there any way of getting Matlab to complete the addition,subtraction, mult and divide?

Iniciar sesión para comentar.

Más respuestas (1)

Azzi Abdelmalek
Azzi Abdelmalek el 18 de Sept. de 2013
%P=x^4+7*x^3-8*x^2+5*x+2
p=[1 7 -8 5 2]
result=roots(p)
  2 comentarios
Azzi Abdelmalek
Azzi Abdelmalek el 18 de Sept. de 2013
If all your roots are real,
syms x
factor(x^4+7*x^3-8*x^2+5*x+2)
should work
Roger Stafford
Roger Stafford el 18 de Sept. de 2013
Only two of the roots are real. The other two are a complex conjugate pair. However the polynomial can still be factored using these complex values.

Iniciar sesión para comentar.

Categorías

Más información sobre Polynomials en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by