Regression with tall array (Using datastore, CSV) - Error
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Hi
5 comentarios
dpb
el 12 de Jul. de 2021
I just tried to see if it was tall arrays and fitglm
>> X=[1:1000].'; X=tall(X);
>> Y=randn(size(X)); % this is interesting sidelight on the way...
Error using randn
Size inputs must be numeric.
>> size(X)
ans =
1×2 tall double row vector
1000 1
>> Y=randn(1000,1); Y=tall(Y); % OK, have to brute-force it
>> fitglm(X,Y,'Distribution',"normal")
Iteration [1]: 0% completed
Iteration [1]: 50% completed
Iteration [1]: 100% completed
Iteration [2]: 0% completed
Iteration [2]: 50% completed
Iteration [2]: 100% completed
Iteration [3]: 0% completed
Iteration [3]: 100% completed
ans =
Compact generalized linear regression model:
y ~ 1 + x1
Distribution = Normal
Estimated Coefficients:
Estimate SE tStat pValue
__________ __________ ________ _______
(Intercept) 0.0015036 0.064429 0.023338 0.98139
x1 1.6177e-05 0.00011151 0.14507 0.88468
1000 observations, 998 error degrees of freedom
Estimated Dispersion: 1.04
F-statistic vs. constant model: 0.021, p-value = 0.885
>>
So, fitglm will accept tall arrays; the syntax must be else where it would seem...
Respuesta aceptada
Ive J
el 13 de Jul. de 2021
Editada: Ive J
el 13 de Jul. de 2021
Well, your data is tall table, and that's what MATLAB complains about: since your first argument is a table, MATLAB thinks y is modelspec. You have two options:
% 1-feed fitglm with matrix
mdl = fitglm(x{:, :}, y{:, :}, 'Link', 'logit', 'Distribution', 'binomial');
% 2-OR: merge x and y as a table
data = [x, y]; % last column is the dependent variable by default
mdl = fitglm(data, 'Link', 'logit', 'Distribution', 'binomial');
Btw, your data is fairly small and (I assume) fits within memory, tall arrays should be avoided for such small datasets.
2 comentarios
Ive J
el 13 de Jul. de 2021
If I were you I would also test with arrays. Processing tables is almost always (based on my experience) slower than arrays.
Good luck!
Más respuestas (0)
Ver también
Categorías
Más información sobre Descriptive Statistics and Visualization en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!