Using interp1 within vpasolve

13 visualizaciones (últimos 30 días)
Adam Zieser
Adam Zieser el 13 de Jul. de 2021
Comentada: Walter Roberson el 14 de Jul. de 2021
I'm having difficulty with the following situation trying to numerically solve an equation (with vpasolve, or something similar) that uses interp1-interpolated data within the solve. Consider:
with implementation:
syms Z;
vpasolve(Z.^4 == ( muL .* interp1(X,GH,Z) - muH .* interp1(X,GL,Z) )./( muL .* interp1(X,FH,Z) ...
- muH .* interp1(X,FL,Z) ), Z);
where and are constants, so that the μ-values are constant, and F and G are 2D matrices squeezed to 1D. These 1D matrices are known on a grid Z = 5:15. Then, I'm attempting to solve this equation for Z, which presumably has real-numbered values as solution. I assumed vpasolve worked iteratively, with an initial guessed query of Z, such that interp1 with (syms Z) is valid to use inside vpasolve. Of course, this doesn't work.
Is there any way to work this? I've simplified things for ease of explanation, but suffice it to say that just doing a polynomial fit on F and G instead of using interp1 is not on the table: the data in the F and G grids need to only be interpolated for non-integer values of Z. Here's some data, just to make it easier to run if needed.
muH = 0.178125;
muL = 0.142500;
GL = [0.2684 0.2690 0.2696 0.2704 0.2714 0.2724 0.2734 0.2746 0.2756 0.2768 0.2781];
GH = [0.3258 0.3280 0.3307 0.3342 0.3381 0.3431 0.3474 0.3520 0.3568 0.3618 0.3670];
FL = 1E-6 .* [0.4234 0.4180 0.4100 0.4017 0.3932 0.3840 0.3766 0.3698 0.3628 0.3554 0.3480];
FH = 1E-6 .* [0.4234 0.4180 0.4100 0.4017 0.3932 0.3840 0.3766 0.3698 0.3628 0.3554 0.3480];

Respuesta aceptada

Walter Roberson
Walter Roberson el 14 de Jul. de 2021
Turn it into a numeric system
z0 = 1;
muH = 0.178125;
muL = 0.142500;
GL = [0.2684 0.2690 0.2696 0.2704 0.2714 0.2724 0.2734 0.2746 0.2756 0.2768 0.2781];
GH = [0.3258 0.3280 0.3307 0.3342 0.3381 0.3431 0.3474 0.3520 0.3568 0.3618 0.3670];
FL = 1E-6 .* [0.4234 0.4180 0.4100 0.4017 0.3932 0.3840 0.3766 0.3698 0.3628 0.3554 0.3480];
FH = 1E-6 .* [0.4234 0.4180 0.4100 0.4017 0.3932 0.3840 0.3766 0.3698 0.3628 0.3554 0.3480];
best_z = fsolve(@(Z) Z.^4 - (( muL .* interp1(X,GH,Z,'linear','extrap') - muH .* interp1(X,GL,Z,'linear','extrap') )./( muL .* interp1(X,FH,Z,'linear','extrap') ...
- muH .* interp1(X,FL,Z,'linear','extrap') )), z0);
Unrecognized function or variable 'X'.

Error in solution (line 10)
best_z = fsolve(@(Z) Z.^4 - (( muL .* interp1(X,GH,Z) - muH .* interp1(X,GL,Z) )./( muL .* interp1(X,FH,Z) ...

Error in fsolve (line 260)
fuser = feval(funfcn{3},x,varargin{:});

Caused by:
Failure in initial objective function evaluation. FSOLVE cannot continue.
  5 comentarios
Adam Zieser
Adam Zieser el 14 de Jul. de 2021
Ah, yes, had to download the Optimization Toolbox. Thanks a bunch!
Walter Roberson
Walter Roberson el 14 de Jul. de 2021
Could also have used fzero in this case.

Iniciar sesión para comentar.

Más respuestas (0)

Productos


Versión

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by