Classifying data using machine learning
    5 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Dhruv Birla
 el 14 de Jul. de 2021
  
    
    
    
    
    Comentada: Dhruv Birla
 el 21 de Jul. de 2021
            Using the fisheriris dataset in MATLAB, I want to use the first 30 datasets of each species for training and then predict the species of the other 20 based on the training data. I tried using the predict function, but it requires the training data vector and the prediction data vector to have the same dimensions. Is there a different function I can use that works the same way as the predict function and allows me to input vectors of varying sizes for training and prediction?
Here is the code I used:
N = size(meas,1);
newLabels = cell(90,1);
newLabels(1:30,1) = species(1:30,1);
newLabels(31:60,1) = species(51:80,1);
newLabels(61:90,1) = species(101:130,1);
trainData = cell(90,2);
trainData = str2double(trainData);
trainData(1:30,1) = meas(1:30,1);
trainData(31:60,1) = meas(51:80,1);
trainData(61:90,1) = meas(101:130,1);
trainData(1:30,2) = meas(1:30,2);
trainData(31:60,2) = meas(51:80,2);
trainData(61:90,2) = meas(101:130,2);
toPredict = cell(90,2);
toPredict = str2double(toPredict);
toPredict(1:30,1) = meas(21:50,1);
toPredict(31:60,1) = meas(71:100,1);
toPredict(61:90,1) = meas(121:150,1);
toPredict(1:30,2) = meas(21:50,2);
toPredict(31:60,2) = meas(71:100,2);
toPredict(61:90,2) = meas(121:150,2);
lda = fitcdiscr(trainData(:,1:2),newLabels);
ldaClass = predict(lda,toPredict);
ldaResubErr = resubLoss(lda);
figure
ldaResubCM = confusionchart(newLabels,ldaClass);
0 comentarios
Respuesta aceptada
  Hrishikesh Borate
    
 el 21 de Jul. de 2021
        Hi, 
The following code uses the fisheriris dataset, where the first 30 instances of each class are used for training and the next 20 instances of each class are used for prediction.
load fisheriris.mat
N = size(meas,1);
newLabels = cell(90,1);
newLabels(1:30,1) = species(1:30,1);
newLabels(31:60,1) = species(51:80,1);
newLabels(61:90,1) = species(101:130,1);
trainData = cell(90,2);
trainData = str2double(trainData);
trainData(1:30,:) = meas(1:30,1:2);
trainData(31:60,:) = meas(51:80,1:2);
trainData(61:90,:) = meas(101:130,1:2);
toPredict = cell(60,2);
toPredict = str2double(toPredict);
toPredict(1:20,:) = meas(31:50,1:2);
toPredict(21:40,:) = meas(81:100,1:2);
toPredict(41:60,:) = meas(131:150,1:2);
toPredictLabels = cell(60,1);
toPredictLabels(1:20,1) = species(31:50,1);
toPredictLabels(21:40,1) = species(81:100,1);
toPredictLabels(41:60,1) = species(131:150,1);
lda = fitcdiscr(trainData(:,1:2),newLabels);
ldaClass = predict(lda,toPredict);
ldaResubErr = resubLoss(lda);
figure
ldaResubCM = confusionchart(toPredictLabels,ldaClass);
Más respuestas (0)
Ver también
Categorías
				Más información sobre Classification Ensembles en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

