I am trying to run a code that results in AM. But in the frequency spectrum, I get the spectrum at a carrier frequency 6 times the original. What am i doing wrong?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
fs=input('Input the sampling frequency : ');
fc=input('Input the carrier frequency : ');
fm=input('Input the message frequency : ');
Am=input('Input the message amplitude : ');
Ac=input('Input the carrier amplitude : ');
dt=1/fs;
t=[-3:dt:3];
m=Am*cos(2*pi*fm*t);
f=1./t;
M=ammod(m,fc,fs,0,Ac);
subplot(2,1,1)
plot(abs(fft(M)));
hold
subplot(2,1,2)
plot(t,M);
2 comentarios
Navan Ruthramoorthy
el 18 de Oct. de 2013
What are the values you used when you tried? Can you post code with all the values for fs, fc etc plugged in instead of using input?
Respuestas (1)
David
el 20 de Oct. de 2013
Editada: David
el 20 de Oct. de 2013
Are you remembering to divide by 2*pi in your frequency plot?? w = 2*pi*f and 2*pi~6.
If this isn't the problem then it may be the number of FFT points you are using. NFFTPts = (Fs*(max(T) - min(T)))/2.
2 comentarios
David
el 20 de Oct. de 2013
Editada: David
el 20 de Oct. de 2013
Okay, since I do not know exactly how you are using the FFT function, a division of 2 may or may not be valid.
As for the slight differences you are getting in frequency, that might be due to the frequency resolution of your plot. Frequency resolution is given by the following equation:
df = 1/T = Fs/N
where T is total acquisition time, N is the number of samples, and Fs is the sampliing frequency. However, in your case, this would be df = 1/6 Hz, which is much smaller than the error you are getting. I'm not sure why you are getting these mixed results...
Note: The frequency resolution improves as the observation time T increases.
Ver también
Categorías
Más información sobre Spectral Measurements en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!