h-coefficient
Peristimulus time histograms are a widespread form of visualizing neuronal responses. Kernel convolution methods transform these histograms into a smooth, continuous probability density function. This provides an improved estimate of a neuron’s actual response envelope. In a recent publication we developed a classifier, called the h-coefficient, to determine whether time-locked fluctuations in the firing rate of a neuron should be classified as a response or as random noise. Unlike previous approaches, the h-coefficient takes advantage of the more precise response envelope estimation provided by the kernel convolution method. The h-coefficient quantizes the smoothed response envelope and calculates the probability of a response of a given shape to occur by chance. Please refer to the original publication for further information.
Citar como
Michael (2024). h-coefficient (https://www.mathworks.com/matlabcentral/fileexchange/48293-h-coefficient), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
Etiquetas
Agradecimientos
Inspirado por: Shade area between two curves, Kernel Density Estimator
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
h-coefficient V1.0/
Versión | Publicado | Notas de la versión | |
---|---|---|---|
1.2 | Minor bug fixes during launch phase... |
|
|
1.1.0.0 | Minor bug fixes during launch phase... |
|
|
1.0.0.0 |
|