CNN classifier using 1D, 2D and 3D feature vectors

Versión 1.0.4 (340 KB) por Selva
using CNN network with pre-extracted feature vectors instead of automatically deriving the features by itself from image.
2,4K Descargas
Actualizado 16 may 2019

Ver licencia

CNN deep network consist of inbuilt feature extraction (flattening) layer along with classification layers. By omitting the feature extraction layer (conv layer, Relu layer, pooling layer), we can give features such as GLCM, LBP, MFCC, etc directly to CNN just to classify alone. This can be acheived by building the CNN architecture using fully connected layers alone. This is helpful for classifying audio data.

http://cs231n.github.io/convolutional-networks/ visit this page for doubts regarding the architecture. I have used C->R->F->F->F architecture

Citar como

Selva (2024). CNN classifier using 1D, 2D and 3D feature vectors (https://www.mathworks.com/matlabcentral/fileexchange/68882-cnn-classifier-using-1d-2d-and-3d-feature-vectors), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2017b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.4

architecture link added

1.0.3

updated the files

1.0.2

updated files

1.0.1

Added theory

1.0.0