Character recognition using LeNet-5

A deep model (LeNet-5) trained on the MNIST dataset is used for character recognition.
626 Descargas
Actualizado 6 may 2021

Ver licencia

The LeNet-5 model implemented in this project has 3 convolutional layers and 2 fully-connected layers. It has 62,000 training parameters, and the image input size is 32*32. This model achieved 98.48% accuracy on the MNIST test set after training on its train set. MNIST is a dataset of handwritten digits with 70,000 centred fixed-size grey-scale images. More details about the dataset are available in:

http://yann.lecun.com/exdb/mnist

Run the GUI and select your image.

Citar como

Ebrahimi, Amir, et al. “Convolutional Neural Networks for Alzheimer’s Disease Detection on MRI Images.” Journal of Medical Imaging, vol. 8, no. 02, SPIE-Intl Soc Optical Eng, Apr. 2021, doi:10.1117/1.jmi.8.2.024503.

Ver más estilos
Compatibilidad con la versión de MATLAB
Se creó con R2020b
Compatible con cualquier versión desde R2019b
Compatibilidad con las plataformas
Windows macOS Linux
Agradecimientos

Inspirado por: Pre-trained 2D LeNet-5

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.1

The relevant paper is published.

1.0.0