estim
Forma el estimador de estado a partir de la ganancia del estimador
Sintaxis
est = estim(sys,L)
est = estim(sys,L,sensors,known)
Descripción
est = estim(sys,L)
genera un estimador de estados/salidas est
dado el modelo de espacio de estados de la planta sys
y la ganancia del estimador L
. Se asume que todas las entradas w de sys
son estocásticas (ruido de proceso o de medición) y todas las salidas y se miden. El estimador est
se devuelve en forma de espacio de estados (objeto SS).
Para una planta de tiempo continuo sys
con ecuaciones
estim
usa las siguientes ecuaciones para generar una estimación de salida de planta y una estimación de estado , que son estimaciones de y(t)=C y x(t), respectivamente:
Para una planta de tiempo discreto sys
con las siguientes ecuaciones:
estim
usa ecuaciones del estimador similares a las de tiempo continuo para generar una estimación de salida de planta y una estimación de estado , que son estimaciones de y[n]= y x[n], respectivamente. Estas estimaciones se basan en mediciones anteriores hasta y[n-1].
est = estim(sys,L,sensors,known)
se ocupa de plantas sys
más generales con entradas (determinísticas) conocidas u y entradas estocásticas w, y con salidas medidas y y salidas no medidas z.
Los vectores índice sensors
y known
especifican qué salidas de sys
se miden (y) y qué entradas de sys
son conocidas (u). El estimador resultante est
, hallado usando las siguientes ecuaciones, utiliza u y y para generar las estimaciones de salida y estado.
Ejemplos
Considere un modelo de espacio de estados sys
con siete salidas y cuatro entradas. Supongamos que ha diseñado una matriz de ganancia de Kalman L utilizando las salidas 4, 7 y 1 de la planta como mediciones de sensores, y las entradas 1, 4 y 3 de la planta como entradas (determinísticas) conocidas. Después puede formar el estimador de Kalman con los valores
sensors = [4,7,1]; known = [1,4,3]; est = estim(sys,L,sensors,known)
Consulte la función kalman
para el diseño del estimador de Kalman directo.
Sugerencias
Puede utilizar las funciones place
(ubicación de polos) o kalman
(filtrado de Kalman) para diseñar la ganancia adecuada de estimador L. Tenga en cuenta que los polos del estimador (valores propios de A-LC) deben ser más rápidos que la dinámica de la planta (valores propios de A) para garantizar una estimación precisa.
Historial de versiones
Introducido antes de R2006a