Regresión lineal múltiple
Regresión lineal con varias variables predictoras
En un modelo de regresión lineal múltiple, la variable de respuesta depende de más de una variable predictora. Puede realizar una regresión lineal múltiple con o sin el objeto LinearModel o usando la app Regression Learner.
Para aumentar la precisión en conjuntos de datos de dimensiones bajas y medianas, ajuste un modelo de regresión lineal mediante fitlm.
Para reducir el tiempo de cálculo en conjuntos de datos de altas dimensiones, ajuste un modelo de regresión lineal mediante fitrlinear.
Apps
| Regression Learner | Entrenar modelos de regresión para predecir datos usando machine learning supervisado |
Bloques
| RegressionLinear Predict | Predecir respuestas usando el modelo de regresión lineal (Desde R2023a) |
| IncrementalRegressionLinear Predict | Predict responses using incremental linear regression model (Desde R2023b) |
| IncrementalRegressionLinear Fit | Fit incremental linear regression model (Desde R2023b) |
| Detect Drift | Actualizar estados de un detector de deriva y el estado de deriva con nuevos datos (Desde R2024b) |
| Per Observation Loss | Per observation regression or classification error of incremental model (Desde R2025a) |
| Update Metrics | Update performance metrics in incremental learning model given new data (Desde R2023b) |
Funciones
Objetos
LinearModel | Modelo de regresión lineal |
CompactLinearModel | Compact linear regression model |
CensoredLinearModel | Censored linear regression model (Desde R2025a) |
CompactCensoredLinearModel | Compact censored linear regression model (Desde R2025a) |
RegressionLinear | Linear regression model for high-dimensional data |
RegressionPartitionedLinear | Cross-validated linear regression model for high-dimensional data |
RegressionQuantileLinear | Quantile linear regression model (Desde R2024b) |
CompactRegressionQuantileLinear | Compact quantile linear regression model (Desde R2025a) |
RegressionPartitionedQuantileModel | Cross-validated quantile model for regression (Desde R2025a) |
Temas
Introducción a la regresión lineal
- What Is a Linear Regression Model?
Regression models describe the relationship between a dependent variable and one or more independent variables. - Linear Regression
Fit a linear regression model and examine the result. - Stepwise Regression
In stepwise regression, predictors are automatically added to or trimmed from a model. - Reduce Outlier Effects Using Robust Regression
Fit a robust model that is less sensitive than ordinary least squares to large changes in small parts of the data. - Choose a Regression Function
Choose a regression function depending on the type of regression problem, and update legacy code using new fitting functions. - Summary of Output and Diagnostic Statistics
Evaluate a fitted model by using model properties and object functions. - Wilkinson Notation
Wilkinson notation provides a way to describe regression and repeated measures models without specifying coefficient values.
Flujos de trabajo de las regresiones lineales
- Linear Regression Workflow
Import and prepare data, fit a linear regression model, test and improve its quality, and share the model. - Interpret Linear Regression Results
Display and interpret linear regression output statistics. - Linear Regression with Interaction Effects
Construct and analyze a linear regression model with interaction effects and interpret the results. - Linear Regression Using Tables
This example shows how to perform linear and stepwise regression analyses using tables. - Linear Regression with Categorical Covariates
Perform a regression with categorical covariates using categorical arrays andfitlm. - Working with Quantile Regression Models
Estimate prediction intervals and create models that are robust to outliers by using quantile regression models. - Regularize Quantile Regression Model to Prevent Quantile Crossing
Use regularization to prevent quantile crossing in quantile regression models. - Analyze Time Series Data
This example shows how to visualize and analyze time series data using atimeseriesobject and theregressfunction. - Train Linear Regression Model
Train a linear regression model usingfitlmto analyze in-memory data and out-of-memory data. - Predict Responses Using RegressionLinear Predict Block
This example shows how to use the RegressionLinear Predict block for response prediction in Simulink®. (Desde R2023a) - Accelerate Linear Model Fitting on GPU
This example shows how you can accelerate regression model fitting by running functions on a graphical processing unit (GPU). - Statistics and Machine Learning with Big Data Using Tall Arrays
This example shows how to perform statistical analysis and machine learning on out-of-memory data with MATLAB® and Statistics and Machine Learning Toolbox™.
Regresión de mínimos cuadrados parciales
- Partial Least Squares
Partial least squares (PLS) constructs new predictor variables as linear combinations of the original predictor variables, while considering the observed response values, leading to a parsimonious model with reliable predictive power. - Partial Least Squares Regression and Principal Components Regression
Apply partial least squares regression (PLSR) and principal components regression (PCR), and explore the effectiveness of the two methods.