blank plot with out value

1 visualización (últimos 30 días)
shiv gaur
shiv gaur el 28 de Feb. de 2022
Comentada: Image Analyst el 28 de Feb. de 2022
a(1)=1;
b(1)=1;
c(1)=1;
s1=0;
s2=0;
s3=0;
k3=28;
k1=8/3;
k2=10;
t=1:20;
for i=1:20
a(i+1)=(1/i+1)*(b(i)-a(i))*k2;
b(i+1)=(1/(i+1))*(a(i)*(k3-c(i))-b(i));
c(i+1)=(1/(i+1))*(a(i)*b(i)-k1*c(i));
end
for i=1:20
s1=s1+(a(i).*t.^i);
s2=s2+(b(i).*t.^i);
s3=s3+(c(i).*t.^i);
end
plot(t,s1)
pl you are req to plot the plot between t vs s1 may be data overflow so how to remove it
  2 comentarios
David Hill
David Hill el 28 de Feb. de 2022
Describe the equations you are trying to plot. Current equations are going to inf and result in nan values in s1.
shiv gaur
shiv gaur el 28 de Feb. de 2022
this is lorenz equation which is change in power series a b c from x y z
a(i+1)=(1/i+1)*(b(i)-a(i))*k2;
b(i+1)=(1/(i+1))*(a(i)*(k3-c(i))-b(i));
c(i+1)=(1/(i+1))*(a(i)*b(i)-k1*c(i));

Iniciar sesión para comentar.

Respuestas (2)

Image Analyst
Image Analyst el 28 de Feb. de 2022
I think you mean s1 vs. t. If so, maybe this is what you want:
a(1)=1;
b(1)=1;
c(1)=1;
s1=0;
s2=0;
s3=0;
k3=28;
k1=8/3;
k2=10;
t=1:20;
for k=1:20
a(k+1)=(1/k+1)*(b(k)-a(k))*k2;
b(k+1)=(1/(k+1))*(a(k)*(k3-c(k))-b(k));
c(k+1)=(1/(k+1))*(a(k)*b(k)-k1*c(k));
end
% Now make t (currently 20 long) the same length (21) as "a":
t = 1 : length(a);
for k=1: length(a)
s1(k+1) = s1(k) + (a(k) .* t(k) .^ k);
s2 = s2 + (b(k) .* t(k) .^ k);
s3 = s3 + (c(k) .* t(k) .^ k);
end
% Now make t (currently 22 long) the same length (22) as s1:
t = 1 : length(s1);
% Now plot
plot(t, s1, 'b-', 'LineWidth', 2)
grid on;
xlabel('t');
ylabel('s1')
  7 comentarios
shiv gaur
shiv gaur el 28 de Feb. de 2022
is there any help to see the research paper and try to reproduce the fig5 ,4 of lorenz system which platform is use for helping
Image Analyst
Image Analyst el 28 de Feb. de 2022
The Mathworks will happily help you. Contact them here:

Iniciar sesión para comentar.


Walter Roberson
Walter Roberson el 28 de Feb. de 2022
You can remove that problem by using the symbolic toolbox for the calculations.
This will not be fast, but at least you will get some value instead of inf or nan. The values will probably reach the order of 10^26000 .
  3 comentarios
shiv gaur
shiv gaur el 28 de Feb. de 2022
is there any help to see the research paper and try to reproduce the fig5 ,4 of lorenz system which platform is use for helping
Walter Roberson
Walter Roberson el 28 de Feb. de 2022
Original plot is blank because every value is so far out of range that it cannot be plotted. The second shows the log10 of the data -- it is obviously trending to the order of -10^5000
Reminder: your role is to show you things like the below, how to get extended range. Our role is not to do your research for you or examine papers to come up with the correct equations for you. We help you understand MATLAB; we mostly do not help you to understand the science or mathematics.
N = 20;
a = sym(zeros(N+1,1));
b = sym(zeros(N+1,1));
c = sym(zeros(N+1,1));
a(1) = 1;
b(1) = 1;
c(1) = 1;
s1 = sym(0);
s2 = sym(0);
s3 = sym(0);
k3 = sym(28);
k1 = sym(8)/3;
k2 = sym(10);
t = sym(1:N+1).';
for i=1:N
a(i+1)=(1/i+1)*(b(i)-a(i))*k2;
b(i+1)=(1/(i+1))*(a(i)*(k3-c(i))-b(i));
c(i+1)=(1/(i+1))*(a(i)*b(i)-k1*c(i));
end
for i=1:N
s1=s1+(a(i).*t.^i);
s2=s2+(b(i).*t.^i);
s3=s3+(c(i).*t.^i);
end
s1
s1 = 
vpa(s1)
ans = 
subplot(2,1,1);
plot(double(t), double(s1)); title('original')
subplot(2,1,2);
plot(double(t), double(log10(-s1))); title('log10')

Iniciar sesión para comentar.

Productos


Versión

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by