finite difference method scheme

16 visualizaciones (últimos 30 días)
aktham mansi
aktham mansi el 8 de Abr. de 2022
Editada: aktham mansi el 8 de Abr. de 2022
discretization with uniform (r*theta) (81 * 41), Implement Jacobi,
the discretization equation is
i tried this code:
error: Array indices must be positive integers or logical values.
someone help me please
% laplace equation - 2D - Jacobi Method - Cylindrical / Polar
% Coordinates
% Dirichlet BC conditions - Constant properties at boundaries
clc
clear all
%%%%%%%%%%%%%%% Inputs
r_in=1; % Inside Radius of polar coordinates, r_in, say 1 m
r_out = 2; % Outside Radins of polar coordinates, r_out, say 2 m
j_max = 40; % no. of sections divided between r_in and r_out eg 80, 160,320
dr = (r_out - r_in)/j_max; % section length, m
%nr = j_max+1; % total no. of radial points =81 or 161 or 321
% total angle = 2*pi
i_max= 80; % no. of angle steps eg 40, 80, 160
dtheta= 2*pi/i_max; % angle step, rad
%Ur_in=1; %BC1
%Ur_out=0; %BC2
r = 1:dr:2;
theta=0:dtheta:2*pi;
[r,theta]=meshgrid(r,theta);
%%%%%initialize solution array
u=zeros(j_max+1,i_max+1);%%%%81*41 matrix
u_0=zeros(j_max+1,i_max+1);
u(1,:)=u(1,:)+1;
u(2,:)=u(2,:)+0;
beta=dr^2/dtheta^2;
n=1;
k=0;
%%% j index for radius r and i index for phi%%%%
while k==0
u_0=u;
k=1;
for i=2:80
for j=2:40
r(j)=1+(j-1)*dr;
theta(i)=dtheta/2+(i-1)*dtheta;
u(i,j)=(r(j+0.5)*u_0(i,j+1)+r(j-0.5)*u_0(i,j-1)+beta*u_0(i+1,j)+beta*u_0(i-1,j))/(r(j+0.5)+r(j-0.5)+2*beta);
if abs(u(i,j)-u_o(i,j))>(10^-5)
k=0;
end
end
end
n=n+1;
end
  7 comentarios
aktham mansi
aktham mansi el 8 de Abr. de 2022
i want to draw the finite difference solution and the analytical solution. ( can you add section to draw the finite difference solution?)
clc
clear all
%%%%%%%%%%%%%%% Inputs
r_in=1; % Inside Radius of polar coordinates, r_in, say 1 m
r_out = 2; % Outside Radins of polar coordinates, r_out, say 2 m
j_max = 40; % no. of sections divided between r_in and r_out eg 80, 160,320
dr = (r_out - r_in)/j_max; % section length, m
%nr = j_max+1; % total no. of radial points =81 or 161 or 321
% total angle = 2*pi
i_max= 80; % no. of angle steps eg 40, 80, 160
dtheta= 2*pi/i_max; % angle step, rad
%Ur_in=1; %BC1
%Ur_out=0; %BC2
r = 1:dr:2;
theta=0:dtheta:2*pi;
[r,theta]=meshgrid(r,theta);
%%%%%initialize solution array
u=zeros(i_max+1,j_max+1);%%%%81*41 matrix
u_0=zeros(i_max+1,j_max+1);
u(1,:)=u(1,:)+1;
u(2,:)=u(2,:)+0;
beta=dr^2/dtheta^2;
n=1;
k=0;
%%% j index for radius r and i index for phi%%%%
while k==0
u_0=u;
k=1;
for i=2:80
for j=2:40
r(j)=1+(j-1)*dr;
theta(i)=dtheta/2+(i-1)*dtheta;
u(i,j)=(((r(j)+r(j+1))/2)*u_0(i,j+1)+((r(j)+r(j-1))/2)*u_0(i,j-1)+beta*u_0(i+1,j)+beta*u_0(i-1,j))/(((r(j)+r(j+1))/2)+((r(j)+r(j-1))/2)+2*beta);
if abs(u(i,j)-u_0(i,j))>(10^-5)
k=0;
end
end
end
n=n+1;
end
n
r = linspace(1,2,41);
theta = linspace(0,2*pi,81);
theta = theta(1:end);
[r,theta] = meshgrid(r,theta);
uana = -log(r)/log(2) + 1;
[x,y]=pol2cart(theta,r);
surface(x,y,uana);
colorbar;
Torsten
Torsten el 8 de Abr. de 2022
Editada: Torsten el 8 de Abr. de 2022
As I said: If nothing is wrong with your solution, the following should work:
r = linspace(1,2,41);
theta = linspace(0,2*pi,81);
[r,theta] = meshgrid(r,theta);
uana = -log(r)/log(2) + 1;
[x,y]=pol2cart(theta,r);
figure(1)
surface(x,y,uana);
figure(2)
surface(x,y,u)
colorbar;

Iniciar sesión para comentar.

Respuesta aceptada

VBBV
VBBV el 8 de Abr. de 2022
clc
clear all
%%%%%%%%%%%%%%% Inputs
r_in=1; % Inside Radius of polar coordinates, r_in, say 1 m
r_out = 2; % Outside Radins of polar coordinates, r_out, say 2 m
j_max = 40; % no. of sections divided between r_in and r_out eg 80, 160,320
dr = (r_out - r_in)/j_max; % section length, m
%nr = j_max+1; % total no. of radial points =81 or 161 or 321
% total angle = 2*pi
i_max= 80; % no. of angle steps eg 40, 80, 160
dtheta= 2*pi/i_max; % angle step, rad
%Ur_in=1; %BC1
%Ur_out=0; %BC2
r = 1:dr:2;
theta=0:dtheta:2*pi;
[r,theta]=meshgrid(r,theta);
%%%%%initialize solution array
u=zeros(i_max+1,j_max+1);%%%%81*41 matrix
u_0=zeros(i_max+1,j_max+1);
u(1,:)=u(1,:)+1;
u(2,:)=u(2,:)+0;
beta=dr^2/dtheta^2;
n=1;
k=0;
%%% j index for radius r and i index for phi%%%%
while k==0
u_0=u;
k=1;
for i=2:80
for j=2:40
r(j)=1+(j-1)*dr;
theta(i)=dtheta/2+(i-1)*dtheta;
u(i,j)=(((r(j)+r(j+1))/2)*u_0(i,j+1)+((r(j)+r(j-1))/2)*u_0(i,j-1)+beta*u_0(i+1,j)+beta*u_0(i-1,j))/(((r(j)+r(j+1))/2)+((r(j)+r(j-1))/2)+2*beta);
if abs(u(i,j)-u_0(i,j))>(10^-5)
k=0;
end
end
end
n=n+1;
end
u
u = 81×41
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0 0.2246 0.3798 0.4896 0.5690 0.6277 0.6717 0.7054 0.7314 0.7518 0.7678 0.7804 0.7903 0.7981 0.8039 0.8082 0.8112 0.8129 0.8134 0.8129 0.8113 0.8087 0.8049 0.8000 0.7939 0.7863 0.7772 0.7663 0.7532 0.7377 0 0.1039 0.1974 0.2783 0.3468 0.4043 0.4521 0.4918 0.5246 0.5517 0.5739 0.5921 0.6068 0.6185 0.6276 0.6343 0.6389 0.6416 0.6424 0.6415 0.6390 0.6347 0.6287 0.6210 0.6115 0.5999 0.5863 0.5704 0.5520 0.5307 0 0.0637 0.1240 0.1796 0.2299 0.2747 0.3141 0.3486 0.3783 0.4038 0.4255 0.4437 0.4587 0.4709 0.4805 0.4877 0.4926 0.4955 0.4964 0.4953 0.4925 0.4877 0.4812 0.4729 0.4627 0.4506 0.4365 0.4205 0.4023 0.3820 0 0.0434 0.0850 0.1242 0.1606 0.1941 0.2244 0.2516 0.2757 0.2968 0.3152 0.3309 0.3441 0.3549 0.3635 0.3700 0.3745 0.3770 0.3778 0.3768 0.3740 0.3696 0.3636 0.3560 0.3467 0.3359 0.3235 0.3096 0.2941 0.2770 0 0.0309 0.0606 0.0889 0.1155 0.1403 0.1631 0.1838 0.2025 0.2191 0.2337 0.2463 0.2570 0.2658 0.2729 0.2783 0.2820 0.2841 0.2847 0.2837 0.2814 0.2777 0.2726 0.2662 0.2585 0.2496 0.2394 0.2282 0.2158 0.2023 0 0.0224 0.0441 0.0648 0.0843 0.1027 0.1196 0.1352 0.1494 0.1621 0.1733 0.1831 0.1914 0.1983 0.2039 0.2081 0.2110 0.2126 0.2130 0.2123 0.2104 0.2073 0.2033 0.1982 0.1921 0.1850 0.1771 0.1684 0.1588 0.1485 0 0.0165 0.0323 0.0476 0.0620 0.0756 0.0882 0.0998 0.1105 0.1200 0.1285 0.1359 0.1422 0.1475 0.1518 0.1550 0.1572 0.1584 0.1587 0.1581 0.1566 0.1542 0.1510 0.1471 0.1424 0.1370 0.1309 0.1243 0.1170 0.1092 0 0.0121 0.0238 0.0351 0.0457 0.0558 0.0651 0.0738 0.0817 0.0888 0.0952 0.1007 0.1055 0.1094 0.1126 0.1150 0.1167 0.1176 0.1178 0.1173 0.1161 0.1143 0.1119 0.1089 0.1054 0.1013 0.0967 0.0917 0.0863 0.0804 0 0.0089 0.0176 0.0259 0.0337 0.0412 0.0481 0.0545 0.0604 0.0657 0.0704 0.0745 0.0780 0.0810 0.0834 0.0851 0.0864 0.0870 0.0872 0.0868 0.0859 0.0845 0.0827 0.0804 0.0778 0.0747 0.0713 0.0676 0.0635 0.0592
  4 comentarios
aktham mansi
aktham mansi el 8 de Abr. de 2022
it will look like that
not rectangular, but polar
aktham mansi
aktham mansi el 8 de Abr. de 2022
@Kaid Noureddine , thank you, could you please draw the domain for me?
the domain should look like this
.

Iniciar sesión para comentar.

Más respuestas (0)

Productos


Versión

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by