why I get imaginary part using solve function
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Sarah Alhabbas
el 14 de Jun. de 2022
Comentada: Walter Roberson
el 14 de Jun. de 2022
I am trying to use the solve function but somehow I keep getting more than one answer with imaginary parts and negative numbers

the correct answer should be the second answer = 0.85
1 comentario
Torsten
el 14 de Jun. de 2022
Editada: Torsten
el 14 de Jun. de 2022
If you multiply eq4 by (1+y*m4^2)^2, you get a polynomial equation of degree 4 in m4. This equation has 4 zeros (which are listed in the output of vpasolve). Two of them are purely imaginary, two of them are real. One of the solution is the one you want (the second one).
Respuesta aceptada
Walter Roberson
el 14 de Jun. de 2022
You have an expression of the form f(x^4)/g(x^2) + b = 0
Multiply through by g(x^2) (assuming nonzero) to get
f(x^4) + b*g(x^2) = 0
collect x terms to get a polynomial in x^4.
Solve the degree 4 polynomial, getting four solutions.
Therefore "the answer" is all four solutions, not just a single solution.
If you have constraints on the outputs, such as being real valued, then filter the results.
3 comentarios
Torsten
el 14 de Jun. de 2022
y = 1.4;
to3 = 300;
t_star = 400;
syms m4
eq4 = (((2*(y+1)*m4^2*(1+(y-1)/2)*m4^2))/(1+y*m4^2)^2) - to3/t_star;
m4 = vpasolve(eq4,m4);
m4 = m4(abs(imag(m4)) < eps & real(m4) > 0)
Walter Roberson
el 14 de Jun. de 2022
y = 1.4;
to3 = 300;
t_star = 400;
syms m4 positive
eq4 = (((2*(y+1)*m4^2*(1+(y-1)/2)*m4^2))/(1+y*m4^2)^2) - to3/t_star;
m4 = solve(eq4,m4);
m4
vpa(m4)
Más respuestas (1)
David Hill
el 14 de Jun. de 2022
y=1.4;
to3=300;
t_star=400;
eq4=@(m4)(((2*(y+1)*m4^2*(1+(y-1)/2)*m4^2))/(1+y*m4^2)^2)-to3/t_star;
m_4=fzero(eq4,.8)
0 comentarios
Ver también
Categorías
Más información sobre Linear Algebra en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
