Non trivial solution to a linear system

5 visualizaciones (últimos 30 días)
Serge El Asmar
Serge El Asmar el 27 de Oct. de 2022
Comentada: Karim el 27 de Oct. de 2022
Hello,
I am trying to solve a linear system of the form A*x=B with A = K-eigenfreq1(3)*M and B = [0 0 0 0 0]'
K and M are 5x5 matrices and eigenfreq1(3) is just a scalar.
However whenever I use the A\B command to solve the system I get the trivial solution x=[0 0 0 0 0]' and I am told that this solution is not unique. Is there a way to get the other, non trivial, solutions?
  4 comentarios
Serge El Asmar
Serge El Asmar el 27 de Oct. de 2022
If you have encountered that before and can help it would be amazing thanks!
Karim
Karim el 27 de Oct. de 2022
See below for an example. This way you obtain all the natural frequencies and the corresponding modes.
K = rand(5);
M = rand(5);
[ EigenModes , EigenFreq ] = eig( K , M )
EigenModes = 5×5
1.0000 -0.5408 0.3037 0.1309 0.1009 0.1474 -1.0000 -0.7636 -0.7115 -1.0000 -0.7752 -0.5870 -0.5500 -0.6974 0.0851 -0.8842 0.2302 1.0000 1.0000 0.2623 0.6343 0.0215 -0.5822 -0.2689 0.6139
EigenFreq = 5×5
-5.8058 0 0 0 0 0 1.5359 0 0 0 0 0 -0.4406 0 0 0 0 0 -0.0414 0 0 0 0 0 0.1681
EigenFreq = diag( EigenFreq )
EigenFreq = 5×1
-5.8058 1.5359 -0.4406 -0.0414 0.1681

Iniciar sesión para comentar.

Respuesta aceptada

VBBV
VBBV el 27 de Oct. de 2022
Editada: VBBV el 27 de Oct. de 2022
syms omega2
K = rand(5);
M = rand(5);
eigF = 0.1; % scalar
eqn1 = det(K-omega2*M) == 0;
eigenfreq1=vpasolve(eqn1,omega2)
eigenfreq1 = 
eigenmodes1 = (K-eigF*M)\ones(5,1) %
eigenmodes1 = 5×1
0.2999 1.0135 -0.1678 1.7206 -0.3961
  1 comentario
VBBV
VBBV el 27 de Oct. de 2022
Editada: VBBV el 27 de Oct. de 2022
Since input B vector are all zeros, non-trivial solution dont exist. If your input vector are all ones you can get non-trivial solution

Iniciar sesión para comentar.

Más respuestas (1)

Torsten
Torsten el 27 de Oct. de 2022
Editada: Torsten el 27 de Oct. de 2022
However whenever I use the A\B command to solve the system I get the trivial solution x=[0 0 0 0 0]' and I am told that this solution is not unique. Is there a way to get the other, non trivial, solutions?
null(A) gives you a basis for the kernel of A.

Productos


Versión

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by