Why contourf and fcontour gives different images for the same matlab code?

1 visualización (últimos 30 días)
I have code for fcountour as;
syms x y
m =1;
sgm =1;
wo = 0.01;
lambda=532 *10^-9;
k=2*pi/lambda;
Omega = .2;
z=30;
Pho=0.003;
for u=1:length(z)
I=0;
Gamma = ((1i.*k)./(2.*z(u))) + (1./(Pho(u).^2)) + (1./(wo.^2));
Gamma_star = subs(Gamma, 1i, -1i);
alpha = (Gamma_star) - 1./((Gamma.*Pho(u).^4));
C = (1./(4.*(lambda.^2).*(z(u).^4))).*((pi.^2)./(alpha.*Gamma)).*(1./(2.*1i.*sqrt(Gamma)).^m);
fx = ((Omega.^2)./(4.*Gamma)) + ((1i.*k.*x.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*x.^2)./(4.*z(u).^2.*Gamma));
fy = ((Omega.^2)./(4.*Gamma)) + ((1i.*k.*y.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*y.^2)./(4.*z(u).^2.*Gamma));
gx = ((Omega.^2)./(4.*Gamma)) - ((1i.*k.*x.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*x.^2)./(4.*z(u).^2.*Gamma));
gy = ((Omega.^2)./(4.*Gamma)) - ((1i.*k.*y.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*y.^2)./(4.*z(u).^2.*Gamma));
Bx_p = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Bx_n = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
By_p = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
By_n = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
Kx_p = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Kx_n = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
Ky_p = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Ky_n = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
X = 0;
for l = 0:m
L = (((1i).*sgm).^(m-l)).*nchoosek(m,l);
sum_j = 0;
for j = 0:m
J= (((-1i).*sgm).^(m-j)).*nchoosek(m,j);
sum1 = 0.0;
for p = 0:1/2:l/2
faktor1_P = (((-1).^p).*factorial(l))./(gamma(p+1).*factorial(l-(2.*p))).*(((2.*1i)./(sqrt(Gamma))).^(l-(2.*p))).*exp(fx).*exp(fy);
for s1 = 0:l-2*p
faktor1_s1 = nchoosek((l-(2.*p)),s1).*((1./(Pho(u).^2)).^s1).*((((1i.*k.*x)./(2.*z(u)))+(Omega./2)).^(l-(2.*p)-s1)).*(1./(((2.*1i.*sqrt(alpha))).^(j+s1)));
for q = 0:1/2:(m-l)/2
faktor1_Q = (((-1).^q).*factorial(m-l))./(gamma(q+1).*factorial(m-l-(2.*q))).*(((2.*1i)./(sqrt(Gamma))).^(m-l-(2.*q)));
sum_inner_1 = 0;
for s2 = 0:m-l-2*q
E1 = (exp(((Bx_p).^2)./alpha).*hermiteH(j+s1,((1i.*Bx_p)./(sqrt(alpha)))).*exp(((By_p).^2)./alpha).*hermiteH(m-j+s2,((1i.*By_p)./(sqrt(alpha))))) - (exp(((Bx_n).^2)./alpha).*hermiteH(j+s1,((1i.*Bx_n)./(sqrt(alpha)))).*exp(((By_n).^2)./alpha).*hermiteH(m-j+s2,((1i.*By_n)./(sqrt(alpha)))));
sum_inner_1 = sum_inner_1 + nchoosek((m-l-(2.*q)),s2).*((1./(Pho(u).^2)).^s2).*((((1i.*k.*y)./(2.*z(u)))+(Omega./2)).^(m-l-(2.*q)-s2)).*(1./(((2.*1i.*sqrt(alpha))).^(m-j+s2))).*E1;
end
end
end
sum1 = sum1 + faktor1_P.*faktor1_s1.*faktor1_Q.*sum_inner_1;
end
sum_j= sum_j + J.*(sum1);
end
X = X + (L.*sum_j);
end
X = (C.*X);
I = I + abs(vpa(X)) ;
figure;
fcontour(real(I), [-1 1 -1 1]*1E-1, 'Fill','on', 'MeshDensity',150);
colormap('hot');
axis('equal');colorbar('vert');
end
Then i have contourf plot as;
figure;
m =1;
sgm =1;
wo = 0.1;
lambda=532 *10^-9;
k=2*pi/lambda;
Omega = .2;
z=30
z = 30
Pho=0.003
Pho = 0.0030
[x, y] = meshgrid(-1:0.06:1);
for u=1:length(z)
I=0;
Gamma = ((1i.*k)./(2.*z(u))) + (1./(Pho(u).^2)) + (1./(wo.^2));
Gamma_star = subs(Gamma, 1i, -1i);
alpha = (Gamma_star) - 1./((Gamma.*Pho(u).^4));
C = (1./(4.*(lambda.^2).*(z(u).^4))).*((pi.^2)./(alpha.*Gamma)).*(1./(2.*1i.*sqrt(Gamma)).^m);
fx = ((Omega.^2)./(4.*Gamma)) + ((1i.*k.*x.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*x.^2)./(4.*z(u).^2.*Gamma));
fy = ((Omega.^2)./(4.*Gamma)) + ((1i.*k.*y.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*y.^2)./(4.*z(u).^2.*Gamma));
gx = ((Omega.^2)./(4.*Gamma)) - ((1i.*k.*x.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*x.^2)./(4.*z(u).^2.*Gamma));
gy = ((Omega.^2)./(4.*Gamma)) - ((1i.*k.*y.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*y.^2)./(4.*z(u).^2.*Gamma));
Bx_p = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Bx_n = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
By_p = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
By_n = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
Kx_p = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Kx_n = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
Ky_p = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Ky_n = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
X = 0;
for l = 0:m
L = (((1i).*sgm).^(m-l)).*nchoosek(m,l);
sum_j = 0;
for j = 0:m
J= (((-1i).*sgm).^(m-j)).*nchoosek(m,j);
sum1 = 0.0;
for p = 0:1/2:l/2
faktor1_P = (((-1).^p).*factorial(l))./(gamma(p+1).*factorial(l-(2.*p))).*(((2.*1i)./(sqrt(Gamma))).^(l-(2.*p))).*exp(fx).*exp(fy);
for s1 = 0:l-2*p
faktor1_s1 = nchoosek((l-(2.*p)),s1).*((1./(Pho(u).^2)).^s1).*((((1i.*k.*x)./(2.*z(u)))+(Omega./2)).^(l-(2.*p)-s1)).*(1./(((2.*1i.*sqrt(alpha))).^(j+s1)));
for q = 0:1/2:(m-l)/2
faktor1_Q = (((-1).^q).*factorial(m-l))./(gamma(q+1).*factorial(m-l-(2.*q))).*(((2.*1i)./(sqrt(Gamma))).^(m-l-(2.*q)));
sum_inner_1 = 0;
for s2 = 0:m-l-2*q
E1 = (exp(((Bx_p).^2)./alpha).*hermiteH(j+s1,((1i.*Bx_p)./(sqrt(alpha)))).*exp(((By_p).^2)./alpha).*hermiteH(m-j+s2,((1i.*By_p)./(sqrt(alpha))))) - (exp(((Bx_n).^2)./alpha).*hermiteH(j+s1,((1i.*Bx_n)./(sqrt(alpha)))).*exp(((By_n).^2)./alpha).*hermiteH(m-j+s2,((1i.*By_n)./(sqrt(alpha)))));
sum_inner_1 = sum_inner_1 + nchoosek((m-l-(2.*q)),s2).*((1./(Pho(u).^2)).^s2).*((((1i.*k.*y)./(2.*z(u)))+(Omega./2)).^(m-l-(2.*q)-s2)).*(1./(((2.*1i.*sqrt(alpha))).^(m-j+s2))).*E1;
end
end
end
sum1 = sum1 + faktor1_P.*faktor1_s1.*faktor1_Q.*sum_inner_1;
end
sum_j= sum_j + J.*(sum1 );
end
X = X + (L.*sum_j);
end
X = (C.*X);
I = I + abs(vpa(X)) ;
contourf(x,y,real(abs(I))/max(real(abs(I(:)))))
colormap('hot');
colorbar('vert');
axis('equal')
end
According to me fcountour plot is correct, then what is wrong with countourf plot? Can anyone help me to fix the error in contourf plot?
  1 comentario
VBBV
VBBV el 28 de Mayo de 2023
Editada: VBBV el 29 de Mayo de 2023
What I got is plot with two extra lobes and the figure is not complete. I have done the contourf plot is to normalize my data. Why when I normalize the data, looks different?
The figures produced by both contourf & fcontour functions are same. If you look at fcontour the range limits
fcontour(real(I), [-1 1 -1 1]*1E-1, 'Fill','on', 'MeshDensity',150);
are [ -1 1 -1 1 ] multiplied by (1/10) i.e. 0.1 and fcontour doesnt normalize data when it plots. However, when you normalize the data ( as in case of contourf) it divides with maximum value from the computed vector. Also, the absoulute value was taken, this also means, the resultant value (which includes complex or imaginary values if any) is considered instead of actual value,

Iniciar sesión para comentar.

Respuesta aceptada

VBBV
VBBV el 28 de Mayo de 2023
If you change the meshgrid limits in the below line
[x, y] = meshgrid(-1/10:0.005:1/10);
and de-normalize the I variable in the contourf function , you will get similar figure as fcontour
contourf(x,y,real(I))
  2 comentarios
Athira T Das
Athira T Das el 28 de Mayo de 2023
m =1;
sgm =1;
wo = 0.1;
lambda=532 *10^-9;
k=2*pi/lambda;
Omega = .2;
z=30
z = 30
Pho=0.003
Pho = 0.0030
[x, y] = meshgrid(-1/10:0.005:1/10);
for u=1:length(z)
I=0;
Gamma = ((1i.*k)./(2.*z(u))) + (1./(Pho(u).^2)) + (1./(wo.^2));
Gamma_star = subs(Gamma, 1i, -1i);
alpha = (Gamma_star) - 1./((Gamma.*Pho(u).^4));
C = (1./(4.*(lambda.^2).*(z(u).^4))).*((pi.^2)./(alpha.*Gamma)).*(1./(2.*1i.*sqrt(Gamma)).^m);
fx = ((Omega.^2)./(4.*Gamma)) + ((1i.*k.*x.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*x.^2)./(4.*z(u).^2.*Gamma));
fy = ((Omega.^2)./(4.*Gamma)) + ((1i.*k.*y.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*y.^2)./(4.*z(u).^2.*Gamma));
gx = ((Omega.^2)./(4.*Gamma)) - ((1i.*k.*x.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*x.^2)./(4.*z(u).^2.*Gamma));
gy = ((Omega.^2)./(4.*Gamma)) - ((1i.*k.*y.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*y.^2)./(4.*z(u).^2.*Gamma));
Bx_p = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Bx_n = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
By_p = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
By_n = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
Kx_p = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Kx_n = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
Ky_p = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Ky_n = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
X = 0;
for l = 0:m
L = (((1i).*sgm).^(m-l)).*nchoosek(m,l);
sum_j = 0;
for j = 0:m
J= (((-1i).*sgm).^(m-j)).*nchoosek(m,j);
sum1 = 0.0;
for p = 0:1/2:l/2
faktor1_P = (((-1).^p).*factorial(l))./(gamma(p+1).*factorial(l-(2.*p))).*(((2.*1i)./(sqrt(Gamma))).^(l-(2.*p))).*exp(fx).*exp(fy);
for s1 = 0:l-2*p
faktor1_s1 = nchoosek((l-(2.*p)),s1).*((1./(Pho(u).^2)).^s1).*((((1i.*k.*x)./(2.*z(u)))+(Omega./2)).^(l-(2.*p)-s1)).*(1./(((2.*1i.*sqrt(alpha))).^(j+s1)));
for q = 0:1/2:(m-l)/2
faktor1_Q = (((-1).^q).*factorial(m-l))./(gamma(q+1).*factorial(m-l-(2.*q))).*(((2.*1i)./(sqrt(Gamma))).^(m-l-(2.*q)));
sum_inner_1 = 0;
for s2 = 0:m-l-2*q
E1 = (exp(((Bx_p).^2)./alpha).*hermiteH(j+s1,((1i.*Bx_p)./(sqrt(alpha)))).*exp(((By_p).^2)./alpha).*hermiteH(m-j+s2,((1i.*By_p)./(sqrt(alpha))))) - (exp(((Bx_n).^2)./alpha).*hermiteH(j+s1,((1i.*Bx_n)./(sqrt(alpha)))).*exp(((By_n).^2)./alpha).*hermiteH(m-j+s2,((1i.*By_n)./(sqrt(alpha)))));
sum_inner_1 = sum_inner_1 + nchoosek((m-l-(2.*q)),s2).*((1./(Pho(u).^2)).^s2).*((((1i.*k.*y)./(2.*z(u)))+(Omega./2)).^(m-l-(2.*q)-s2)).*(1./(((2.*1i.*sqrt(alpha))).^(m-j+s2))).*E1;
end
end
end
sum1 = sum1 + faktor1_P.*faktor1_s1.*faktor1_Q.*sum_inner_1;
end
sum_j= sum_j + J.*(sum1 );
end
X = X + (L.*sum_j);
end
X = (C.*X);
I = I + abs(vpa(X)) ;
contourf(x,y,real(abs(I))/max(real(abs(I(:)))), 'EdgeColor','none')
colormap('hot');
colorbar('vert');
axis('equal')
end
What I got is plot with two extra lobes and the figure is not complete. I have done the contourf plot is to normalize my data. Why when I normalize the data, looks different?
VBBV
VBBV el 28 de Mayo de 2023
m =1;
sgm =1;
% this parameter is also something different in both codes
wo = 0.01;
lambda=532 *10^-9;
k=2*pi/lambda;
Omega = .2;
z=30
z = 30
Pho=0.003
Pho = 0.0030
[x, y] = meshgrid(-1/10:0.005:1/10);
for u=1:length(z)
I=0;
Gamma = ((1i.*k)./(2.*z(u))) + (1./(Pho(u).^2)) + (1./(wo.^2));
Gamma_star = subs(Gamma, 1i, -1i);
alpha = (Gamma_star) - 1./((Gamma.*Pho(u).^4));
C = (1./(4.*(lambda.^2).*(z(u).^4))).*((pi.^2)./(alpha.*Gamma)).*(1./(2.*1i.*sqrt(Gamma)).^m);
fx = ((Omega.^2)./(4.*Gamma)) + ((1i.*k.*x.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*x.^2)./(4.*z(u).^2.*Gamma));
fy = ((Omega.^2)./(4.*Gamma)) + ((1i.*k.*y.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*y.^2)./(4.*z(u).^2.*Gamma));
gx = ((Omega.^2)./(4.*Gamma)) - ((1i.*k.*x.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*x.^2)./(4.*z(u).^2.*Gamma));
gy = ((Omega.^2)./(4.*Gamma)) - ((1i.*k.*y.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*y.^2)./(4.*z(u).^2.*Gamma));
Bx_p = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Bx_n = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
By_p = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
By_n = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
Kx_p = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Kx_n = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
Ky_p = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Ky_n = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
X = 0;
for l = 0:m
L = (((1i).*sgm).^(m-l)).*nchoosek(m,l);
sum_j = 0;
for j = 0:m
J= (((-1i).*sgm).^(m-j)).*nchoosek(m,j);
sum1 = 0.0;
for p = 0:1/2:l/2
faktor1_P = (((-1).^p).*factorial(l))./(gamma(p+1).*factorial(l-(2.*p))).*(((2.*1i)./(sqrt(Gamma))).^(l-(2.*p))).*exp(fx).*exp(fy);
for s1 = 0:l-2*p
faktor1_s1 = nchoosek((l-(2.*p)),s1).*((1./(Pho(u).^2)).^s1).*((((1i.*k.*x)./(2.*z(u)))+(Omega./2)).^(l-(2.*p)-s1)).*(1./(((2.*1i.*sqrt(alpha))).^(j+s1)));
for q = 0:1/2:(m-l)/2
faktor1_Q = (((-1).^q).*factorial(m-l))./(gamma(q+1).*factorial(m-l-(2.*q))).*(((2.*1i)./(sqrt(Gamma))).^(m-l-(2.*q)));
sum_inner_1 = 0;
for s2 = 0:m-l-2*q
E1 = (exp(((Bx_p).^2)./alpha).*hermiteH(j+s1,((1i.*Bx_p)./(sqrt(alpha)))).*exp(((By_p).^2)./alpha).*hermiteH(m-j+s2,((1i.*By_p)./(sqrt(alpha))))) - (exp(((Bx_n).^2)./alpha).*hermiteH(j+s1,((1i.*Bx_n)./(sqrt(alpha)))).*exp(((By_n).^2)./alpha).*hermiteH(m-j+s2,((1i.*By_n)./(sqrt(alpha)))));
sum_inner_1 = sum_inner_1 + nchoosek((m-l-(2.*q)),s2).*((1./(Pho(u).^2)).^s2).*((((1i.*k.*y)./(2.*z(u)))+(Omega./2)).^(m-l-(2.*q)-s2)).*(1./(((2.*1i.*sqrt(alpha))).^(m-j+s2))).*E1;
end
end
end
sum1 = sum1 + faktor1_P.*faktor1_s1.*faktor1_Q.*sum_inner_1;
end
sum_j= sum_j + J.*(sum1 );
end
X = X + (L.*sum_j);
end
X = (C.*X);
I = I + abs(vpa(X)) ;
contourf(x,y,real((I)), 'EdgeColor','none')
colormap('hot');
colorbar('vert');
axis('equal')
end
In addition to x & y range limits in meshgrid and denormailized I variable, the value of parameter wo is used differently in contourf & fcontour functions , See the below line in both codes
% this value is 0.01 in fcontour and 0.1 in contourf function codes, why ?
wo = 0.01;

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Contour Plots en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by