Solving the differential equation by the Runge-Kutta method (ode45)

4 visualizaciones (últimos 30 días)
I want solve this equation numerically and use fourth order Runge-Kutta method. (ode45)
What is the code?
My code:
function dfdt = odefun2(x,y)
dfdt = [y(2); y(1) .^(-3) - (w .*r0 ./c) .^2 .*phi2 .*y(1)];
end
****
clc, clear, close all;
w = 2e16;
r0 = 30e-6;
c = 3e8;
p = 2.5;
f = 1;
Wp0 = p .*c ./r0;
a02 = 0.050;
phi2 = (Wp0 ./w) .^2 .*(3 .*a02 ./f .^4) ./4 ./(1 + a02 ./2 ./f .^2) .^1.5...
.*(1 + (56 + a02 ./f .^2) ./3 ./(1 + a02 ./2 ./f .^2) ./p .^2 ./f .^2);
[t, y] = ode45(@odefun2,[0 3],[1,0]);
******
But it gives an error ..
I have attached two pictures to the question, look at them if you need.
  5 comentarios
Torsten
Torsten el 6 de Mzo. de 2024
Editada: Torsten el 6 de Mzo. de 2024
According to your code, your boundary conditions are
f(zeta=0) = 1
df/dzeta (zeta=0) = 0
Is this correct ?
Did you differentiate depsilon/dzeta somewhere to insert it into the differential equation ? I cannot find it in your code.
Babr
Babr el 6 de Mzo. de 2024
Yes, the boundary conditions you said are correct.
The second term in right hand of equation has been usually overlooked in most of the studies in view of negligible impact.

Iniciar sesión para comentar.

Respuesta aceptada

Torsten
Torsten el 6 de Mzo. de 2024
Editada: Torsten el 6 de Mzo. de 2024
[t, y] = ode45(@odefun2,[0 3],[1,0]);
plot(t,y(:,1))
function dfdt = odefun2(x,y)
w = 2e16;
r0 = 30e-6;
c = 3e8;
p = 2.5;
Wp0 = p .*c ./r0;
a02 = 0.050;
phi2 = (Wp0/w)^2 * 3*a02/y(1)^4 / (4*(1+a02/(2*y(1)^2))^1.5) *...
(1 + 1/(p^2*y(1)^2) * (56+a02/y(1)^2)/(3*(1+a02/(2*y(1)^2))^0.5));
dfdt = [y(2); y(1) .^(-3) - (w .*r0 ./c) .^2 .*phi2 .*y(1)];
end
  5 comentarios
Torsten
Torsten el 6 de Mzo. de 2024
Editada: Torsten el 6 de Mzo. de 2024
syms f(x) p c r0 a02 w
Wp0 = p*c/r0;
e = 1 - (Wp0/w)^2 / sqrt(1+a02/(2*f^2)) * (1- 1/p^2 * 3*a02/f^4 / sqrt(1+a02/(2*f^2)));
simplify(diff(e,x))
ans(x) = 
and df/dx in your code is y(2).
[t, y] = ode45(@odefun2,[0 3],[1,0]);
plot(t,y(:,1))
function dfdt = odefun2(x,y)
w = 2e16;
r0 = 30e-6;
c = 3e8;
p = 2.5;
Wp0 = p .*c ./r0;
a02 = 0.050;
phi2 = (Wp0/w)^2 * 3*a02/y(1)^4 / (4*(1+a02/(2*y(1)^2))^1.5) *...
(1 + 1/(p^2*y(1)^2) * (56+a02/y(1)^2)/(3*(1+a02/(2*y(1)^2))^0.5));
e = 1 - (Wp0/w)^2 / sqrt(1+a02/(2*y(1)^2)) * (1- 1/p^2 * 3*a02/y(1)^4 / sqrt(1+a02/(2*y(1)^2)));
sigma1 = a02/(2*y(1)^2) + 1;
dedx = 3*a02^2*c^2*y(2)/(r0^2*w^2*y(1)^7*sigma1^2) ...
-12*a02*c^2*y(2)/(r0^2*w^2*y(1)^5*sigma1)...
-a02*c^2*p^2*y(2)/(2*r0^2*w^2*y(1)^3*sigma1^1.5);
dfdt = [y(2); y(1)^(-3)-1/(2*e)*dedx*y(2)-(w*r0/c)^2*phi2*y(1)];
end
Babr
Babr el 6 de Mzo. de 2024
I don't know how to thank you ..

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Numerical Integration and Differential Equations en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by