1) Generate intermediate points in a set of X,Y while respecting the original points order. 2) Generate same number of points for 2 different set of X,Y with different sizes.
65 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Mohamad TOUT
el 16 de Oct. de 2025 a las 6:44
Comentada: Mathieu NOE
el 20 de Oct. de 2025 a las 10:02
1) Generate intermediate points in a set of X,Y in matlab while respecting the original points order.
2) Generate same number of points for 2 different set of X,Y with different sizes.
I hope my question is clear.
Imagine I have 2 variables with totaly different sizes :
a=[2,1;2,2;1,4;-1,4;-2,1;-2,-2;0,-3;1.5,0];
b = [3,2;3,3;2,5;0,6;-2,5;-3,2;-3,-1;0,-4;2,-2];

I need to generate 2 variables of same dimensions (say 1000 points, Equidistant) from a and b. the first strating with a-start and the second with b-start.
3) I have something like this in 3D but hope an idea to do it for 2D will work also for 3D
Thank you
Respuesta aceptada
Mathieu NOE
el 16 de Oct. de 2025 a las 14:24
my turn to try something... with the help of interparc :
NB that nothing forces the two curves to be parallel (otherwise it would be better to start with a central line and then create the two "borders")
try with the different interpolation methods and pick the one you prefer
here also I took only N = 100 points so we can clearly see them on the plot, but you can opt for more if you want..
may I also point out that going from a very low sampling like 8 points to 1000 interpolated points leaves a lot or room to "interpret" what shape you want to follow (linear, polynomial - which order ?)

a=[2,1;2,2;1,4;-1,4;-2,1;-2,-2;0,-3;1.5,0];
b = [3,2;3,3;2,5;0,6;-2,5;-3,2;-3,-1;0,-4;2,-2];
plot(a(:,1),a(:,2),'ro','markersize',20);grid
hold on
plot(b(:,1),b(:,2),'gs','markersize',20),grid
% interpolate using parametric splines
N = 100;
pta = interparc(N,a(:,1),a(:,2),'pchip');
ptb = interparc(N,b(:,1),b(:,2),'pchip');
% Plot the result
plot(pta(:,1),pta(:,2),'r-*');
plot(ptb(:,1),ptb(:,2),'g-*');
hold off
grid on
axis equal
2 comentarios
John D'Errico
el 16 de Oct. de 2025 a las 15:01
If the goal is equidistant points along an arc, interparc is the right tool. And it works in any number of dimensions. Of course, I may be biased. ;-)
Más respuestas (1)
Alan Stevens
el 16 de Oct. de 2025 a las 12:46
Editada: Alan Stevens
el 16 de Oct. de 2025 a las 12:48
Something like this? (I've just used 50 interpolated points for clarity below). Choose your own interpolation type. The "equidistant" below is interpreted as equal angle separation.
a=[2,1;2,2;1,4;-1,4;-2,1;-2,-2;0,-3;1.5,0];
b = [3,2;3,3;2,5;0,6;-2,5;-3,2;-3,-1;0,-4;2,-2];
plot(a(:,1),a(:,2),'ro-',b(:,1),b(:,2),'bs-'),grid
hold on
% convert to polar coordinates
[tha,ra] = cart2pol(a(:,1),a(:,2));
[thb,rb] = cart2pol(b(:,1),b(:,2));
tha(tha<=0)=tha(tha<=0)+2*pi;
thb(thb<=0)=thb(thb<=0)+2*pi;
na = length(tha);
nb = length(thb);
n = 50; % Nbr of interpolated points
i = 1:n;
thetaa(i) = (tha(na)-tha(1))*(i-1)/(n-1) + tha(1);
thetab(i) = (thb(nb)-thb(1))*(i-1)/(n-1) + thb(1);
xa = interp1(tha,a(:,1),thetaa);
ya = interp1(tha,a(:,2),thetaa);
xb = interp1(thb,b(:,1),thetab);
yb = interp1(thb,b(:,2),thetab);
plot(xa,ya,'*:',xb,yb,'+:')
2 comentarios
Mathieu NOE
el 16 de Oct. de 2025 a las 13:21
I wonder if the OP wanted something like a spline interpolation, and with equidistant with ds = sqrt(dx²+dy²) in mind ?
Ver también
Categorías
Más información sobre Interpolation en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
