Bisection Method Code MATLAB

1.437 visualizaciones (últimos 30 días)
Emmanuel Pardo-Cerezo
Emmanuel Pardo-Cerezo el 4 de Oct. de 2019
Respondida: Prosun el 24 de Sept. de 2024
Problem 4 Find an approximation to (sqrt 3) correct to within 10−4 using the Bisection method (Hint: Consider f(x) = x 2 − 3.) (Use your computer code)
I have no idea how to write this code. he gave us this template but is not working. If you run the program it prints a table but it keeps running. for some reason the program doesnt stop.
tol = 1.e-10;
a = 1.0;
b = 2.0;
nmax = 100;
% Initialization
itcount = 0;
error = 1.0;
% Graph of the function
xval = linspace(a,b,100);
for i=1:100
fval(i) = func(xval(i));
end
plot(xval,fval);
grid on;
hold on;
% iteration begins here
while (itcount <= nmax && error >= tol)
itcount = itcount + 1;
% Generate and save iteratres
x = a + (b-a)/2;
z(itcount) = x;
fa = func(a);
fb = func(b);
fx = func(x);
error = abs(fx);
% error = abs(x - xold);
if (error < tol)
x_final = x;
else
if (fa*fx < 0)
% root is between a and x
b = x;
else
% root is between x and b
a = x;
end
end
plot(z(1:itcount),zeros(itcount,1),'r+');
pause(5)
end
if (itcount < nmax);
val = func(x);
fprintf(1,'Converged solution after %5d iterations',itcount);
fprintf(1,' is %15.7e, %e \n',x_final, val);
else fprintf(1,'Not converged after %5d iterations',nmax);
end
function val = func(x)
%val = x^3 + 4 * x^2 - 10;
val = x^3 - x - 3;
%val = sin(x);
end
  3 comentarios
Aristi Christoforou
Aristi Christoforou el 14 de Abr. de 2021
function[x]=bisect(m)
a=1;
b=3;
k=0;
while b-a>eps*b
x=(a+b)/2
if x^2>m
b=x
else
a=x
end
k=k+1
end
Uttsa
Uttsa el 3 de Jul. de 2024
Whats the use of "eps" can you elaborate?

Iniciar sesión para comentar.

Respuestas (6)

David Hill
David Hill el 4 de Oct. de 2019
function c = bisectionMethod(f,a,b,error)%f=@(x)x^2-3; a=1; b=2; (ensure change of sign between a and b) error=1e-4
c=(a+b)/2;
while abs(f(c))>error
if f(c)<0&&f(a)<0
a=c;
else
b=c;
end
c=(a+b)/2;
end
Not much to the bisection method, you just keep half-splitting until you get the root to the accuracy you desire. Enter function above after setting the function.
f=@(x)x^2-3;
root=bisectionMethod(f,1,2);
  1 comentario
Justin Vaughn
Justin Vaughn el 10 de Oct. de 2022
Thank you for this because I was not sure of how to easily send a functino into my method's function. yours helped tremendously!

Iniciar sesión para comentar.


SHUBHAM GHADOJE
SHUBHAM GHADOJE el 29 de Mayo de 2021
Editada: Walter Roberson el 12 de Jul. de 2024
function c = bisectionMethod(f,j,k,error)
%f=@(x)x^2-3;
%j=1;
%k=2;
%(ensure change of sign between a and b)
%error=1e-4
c=(j+k)/2;
while abs(f(c))>error
if f(c)<0&&f(a)<0
j=c;
else
k=c;
end
c=(j+k)/2;
end

Prathamesh Purkar
Prathamesh Purkar el 6 de Jun. de 2021
Editada: Walter Roberson el 3 de Dic. de 2021
tol = 1.e-10;
a = 1.0;
b = 2.0;
nmax = 100;
% Initialization
itcount = 0;
error = 1.0;
% Graph of the function
xval = linspace(a,b,100);
for i=1:100
fval(i) = func(xval(i));
end
plot(xval,fval);
grid on;
hold on;
% iteration begins here
while (itcount <= nmax && error >= tol)
itcount = itcount + 1;
% Generate and save iteratres
x = a + (b-a)/2;
z(itcount) = x;
fa = func(a);
fb = func(b);
fx = func(x);
error = abs(fx);
% error = abs(x - xold);
if (error < tol)
x_final = x;
else
if (fa*fx < 0)
% root is between a and x
b = x;
else
% root is between x and b
a = x;
end
end
plot(z(1:itcount),zeros(itcount,1),'r+');
pause(5)
end
if (itcount < nmax);
val = func(x);
fprintf(1,'Converged solution after %5d iterations',itcount);
fprintf(1,' is %15.7e, %e \n',x_final, val);
else
fprintf(1,'Not converged after %5d iterations',nmax);
end
function val = func(x)
%val = x^3 -x + 1;
val = x^3 -x + 1;
%val = sin(x);
end

narendran
narendran el 2 de Jul. de 2022
5cosx + 4.5572 -cos30cosx-ssin30sinx
  3 comentarios
Walter Roberson
Walter Roberson el 2 de Jul. de 2022
syms x
y = 5*cos(x) + 4.5572 - cos(30)*cos(x)-sin(30)*sin(x)
y = 
fplot(y, [-20 20]); yline(0)
vpasolve(y,x)
ans = 
Walter Roberson
Walter Roberson el 3 de Jul. de 2024
Note by the way that cos(30) is cos of 30 radians. It seems unlikely that is what is desired.

Iniciar sesión para comentar.


Aman Pratap Singh
Aman Pratap Singh el 3 de Dic. de 2021
Editada: Walter Roberson el 3 de Dic. de 2021
f = @(x)('x^3-2x-5');
a = 2;
b = 3;
eps = 0.001;
m = (a+b)/2;
fprintf('\nThe value of, after bisection method, m is %f\n', m);
while abs(b-a)>eps
if (f(a)*f(m))<0
b=m;
else
a=m;
end
m = (a+b)/2;
end
fprintf('\nThe value of, after bisection method, m is %f\n', m);
  1 comentario
Walter Roberson
Walter Roberson el 3 de Dic. de 2021
f = @(x)('x^3-2x-5');
That means that f will become a function handle that, given any input, will return the character vector ['x', '^', '3', '-', '2', 'x', '-', '5'] which is unlikely to be what you want to have happen.
f(0)
ans = 'x^3-2x-5'
f(1)
ans = 'x^3-2x-5'
f(rand(1,20))
ans = 'x^3-2x-5'

Iniciar sesión para comentar.


Prosun
Prosun el 24 de Sept. de 2024
% Clearing Screen
clc
% Setting x as symbolic variable
syms x;
% Input Section
y = input('Enter non-linear equations: ');
a = input('Enter first guess: ');
b = input('Enter second guess: ');
e = input('Tolerable error: ');
% Finding Functional Value
fa = eval(subs(y,x,a));
fb = eval(subs(y,x,b));
% Implementing Bisection Method
if fa*fb > 0
disp('Given initial values do not bracket the root.');
else
c = (a+b)/2;
fc = eval(subs(y,x,c));
fprintf('\n\na\t\t\tb\t\t\tc\t\t\tf(c)\n');
while abs(fc)>e
fprintf('%f\t%f\t%f\t%f\n',a,b,c,fc);
if fa*fc< 0
b =c;
else
a =c;
end
c = (a+b)/2;
fc = eval(subs(y,x,c));
end
fprintf('\nRoot is: %f\n', c);
end

Categorías

Más información sobre Numbers and Precision en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by