Velocity of a Weather Balloon
10 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Ertugrul Icer
el 16 de Jun. de 2020
Comentada: Image Analyst
el 17 de Jun. de 2020
Let the following polynomial represent the velocity of a weather balloon following the launch:
v(t) = -0.25*t.^3 + 36*t.^2 - 760t + 4100
Here, "t" needs to be dened as a symbolic variable. By using the given velocity polynomial, construct a MATLAB code to:
a) Find the altitude polynomial of the balloon in terms of t where constant term of the altitude polynomial is dened as "9".
b) Determine when the balloon hits the ground (Your code should give one exact answer as an acceptable numerical value for t).
c) Obtain plots of altitude and velocity from time 0 until the balloon hits the ground by using the command "ezplot".
2 comentarios
Respuesta aceptada
David Hill
el 16 de Jun. de 2020
I will give you a start:
syms t;
v=-0.25*t.^3 + 36*t.^2 - 760*t + 4100;
s=int(v)+9;
a=diff(v);
ezplot(s,[0,155.7]);
figure;
ezplot(v,[0,155.7]);
5 comentarios
David Hill
el 17 de Jun. de 2020
Because it is a polynomial and matlab has special functions that support polynomials.
Más respuestas (1)
Image Analyst
el 17 de Jun. de 2020
Another hint:
t = linspace(0, 125, 1000);
v = -0.25*t.^3 + 36*t.^2 - 760*t + 4100 % Your equation
% Now plot it:
plot(t, v, 'b-', 'LineWidth', 2);
grid on;
xlabel('t', 'FontSize', 20);
ylabel('Velocity', 'FontSize', 20);
% Draw a line at v=0
yline(0, 'Color', 'black', 'LineWidth', 2);

1 comentario
Ver también
Categorías
Más información sobre Polynomials en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!