Smooth decay of a function

4 visualizaciones (últimos 30 días)
Saurav
Saurav el 26 de Jul. de 2020
Comentada: Saurav el 27 de Jul. de 2020
I have a function which dies of quickely. I need this function to smoothly decay off to 0 . Is there any way in Matlab to make that happen?
  4 comentarios
Image Analyst
Image Analyst el 26 de Jul. de 2020
Please give values for everything in that alphabet soup. And include a screenshot of what you got, and what you'd like to achieve, but only after you read this link.
T = linspace(-5, 5, 500);
Tc = 3;
y = 2;
a = 7;
b = 6;
m = ((-b + (((b*b)-(4*y*a*(T-Tc))).^0.5))/(2*y)).^0.5;
subplot(2, 1, 1);
plot(T, real(m), 'b-', 'LineWidth', 2);
title('Real(m) vs. T', 'FontSize', 20);
grid on;
xlabel('T', 'FontSize', 20);
ylabel('real(m)', 'FontSize', 20);
% For T>Tc, m(T) becomes complex so m(T>Tc)=0
% Hence I want m(T) to smoothly decay to 0 for T>Tc
subplot(2, 1, 2);
plot(T, imag(m), 'b-', 'LineWidth', 2);
title('Imag(m) vs. T', 'FontSize', 20);
grid on;
xlabel('T', 'FontSize', 20);
ylabel('imag(m)', 'FontSize', 20);
For the random values I chose, it does look like the curve approaches the Tc point smoothly. What does it look like for you, with your values???
Saurav
Saurav el 27 de Jul. de 2020
Sir, curve is smooth till Tc then as per the function it must go to 0 for T>Tc but I want to modify the function in such way that for T>Tc curve smoothly decays to 0 with finite first derrivative for entire range of values

Iniciar sesión para comentar.

Respuestas (1)

Alan Stevens
Alan Stevens el 26 de Jul. de 2020
Editada: Alan Stevens el 26 de Jul. de 2020
How about writing a function like:
function mfn = mvalue(T,Tc,a,b,y)
disc = b^2 - 4*y*a*(T - Tc);
quad = -b + disc^0.5/(2*y);
if disc>0 && quad>0
mfn = quad^0.5;
else
mfn = 0;
end
end
and then calling
m(i) = mvalue(T(i), Tc, a, b, y);
  5 comentarios
Alan Stevens
Alan Stevens el 26 de Jul. de 2020
Editada: Alan Stevens el 26 de Jul. de 2020
Impossible to tell without knowing about the system you are modelling. Mathematically you could probably multiply m by some sort of exponential decay term. However, would that make sense in the context of your model?
Saurav
Saurav el 27 de Jul. de 2020
Sir, I want the function to decay to 0 over small range with small change to curve for lets say
( Tc-delta,Tc+delta) range for delta-->0 with ensuring first derrivative remaining finite for entire range.Directly multiplying the function with exponential decay will highly modify the function.I tried adding small expo. decay to this function at the end for T>Tc but it creates knife edge point in the function at T=Tc. All i am asking is there any way to smooth the function in matlab because in verilog it automatically creates smooth function for such discontinuities. Thanks in advance.

Iniciar sesión para comentar.

Categorías

Más información sobre Matrix Indexing en Help Center y File Exchange.

Productos


Versión

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by