How do I use muller method for solving multivariable equations?

8 visualizaciones (últimos 30 días)
Shreya Menon
Shreya Menon el 20 de Ag. de 2020
Comentada: Shreya Menon el 26 de Ag. de 2020
I have two equations of 2 variables. I tried using 'solve' but it keeps on calculating for hours together with no results. I would like to use Muller method as I have used it before and I can define start points and number of iterations. I can also check the residual value. Can anyone please suggest, how can I use Muller for solving multivariable equations?
  2 comentarios
Alan Stevens
Alan Stevens el 20 de Ag. de 2020
Easier to do this if we know what your equations are.
Shreya Menon
Shreya Menon el 23 de Ag. de 2020
Sorry... The equations are:
1.) (epir*(diff(besselj(1,V))/(V*k0a*besselj(1,V)))-(diff(besselk(1,W))/(W*k0a*besselk(1,W))))*(mewr*(diff(besselj(1,V))/(V*k0a*besselj(1,V)))-(diff(besselk(1,W))/(W*k0a*besselk(1,W))))=((V^2+W^2)*(V^2+mewr*epir*W^2))/(V^4*W^4*k0a^4)
2.) ((2*(b+L*tand(alpha))/lambda0)^2)*(pi^2)*(mewr*epir-1)==(V^2+W^2)*k0a^2
V and W is to be found. These are equations for propagation characteristics of solid dielectric rod antenna. Kindly help in this regard.

Iniciar sesión para comentar.

Respuestas (1)

Alan Stevens
Alan Stevens el 24 de Ag. de 2020
Editada: Alan Stevens el 24 de Ag. de 2020
I guess there are a few options.
  1. If you have the Opimisation toolbox, use fsolve.
  2. In your second equation replace V^2 + W^2 by, say, Rsq and solve for Rsq. Then express V as a function of W, knowing Rsq. Then use fzero to find W. The code structure might look something like the following (I'm unable to test it because I don't have your constants).
Rsq = ((2*(b+L*tand(alpha))/lambda0)^2)*(pi^2)*(mewr*epir-1)/k0a^2;
Vfn = @(W) sqrt(Rsq - W.^2);
W0 = ....; % Insert your initial guess
W = fzero(@Wfn, W0);
V = Vfn(W);
function WW = Wfn(W)
V = Vfn(W);
WW = (epir*(diff(besselj(1,V))/(V*k0a*besselj(1,V))) ...
-(diff(besselk(1,W))/(W*k0a*besselk(1,W))))*(mewr*(diff(besselj(1,V))/(V*k0a*besselj(1,V))) ...
-(diff(besselk(1,W))/(W*k0a*besselk(1,W))))-((V^2+W^2)*(V^2+mewr*epir*W^2))/(V^4*W^4*k0a^4);
end
3. An alternative to using fzero with option 2 is to program the Muller method yourself. However, I suspect fzero is the better option.
  5 comentarios
Alan Stevens
Alan Stevens el 26 de Ag. de 2020
Ah, fzero only deals with real numbers I'm afraid. I guess you need to look at the Optimisation toolbox.
Shreya Menon
Shreya Menon el 26 de Ag. de 2020
Thank you sir for all the help you provided.

Iniciar sesión para comentar.

Categorías

Más información sobre Polynomials en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by