Help with syms function. Unable to find explicit solution
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Tyler Bodnarik
el 18 de Oct. de 2020
Editada: John D'Errico
el 18 de Oct. de 2020
I'm trying to solve for a variable that is on both sides of an equation.
T = 10;
h = 20;
g = -9.81;
syms L
eq = L == ((g)*(T)^2/(2*pi)) * tanh((2*pi*h)/L); % to solve for L
WL = solve(eq,L);
Wave_Length = vpa(WL);
Matlab is unable to find the explicit solution any ideas for how to fix this?
0 comentarios
Respuesta aceptada
John D'Errico
el 18 de Oct. de 2020
Editada: John D'Errico
el 18 de Oct. de 2020
Would you assume that every equation you write down hs an analytical solution? Why would you?
T = 10;
h = 20;
g = -9.81;
syms L
First, let me write the equation as an expression, instead of an equality. This way we can plot it, and then look for a zero crossing.
eq = -L + ((g)*(T)^2/(2*pi)) * tanh((2*pi*h)/L); % to solve for L
fplot(eq)
And what we see is a "function that crosses y==0 around L == 0, but as you approach L == 0, you divide by L. Therefore you have a singularity at L==0, exactly where the curve crosses zero.
No solution exists, because your expression is undefined at L == 0. So no, you cannot fix this. Nor can you solve for it. This is not a question of you not understanding how to use solve properly. It is a question of applying solve to something where no solution exists.
When something strange happens, PLOT IT!!!!!!!! Plot everything! Then when you have plotted everything you can think of, try plotting something else. And think about what you see there.
0 comentarios
Más respuestas (1)
David Hill
el 18 de Oct. de 2020
Graphing helps.
T = 10;
h = 20;
g = -9.81;
L=-.001:.000001:.001;
y=((g)*(T)^2/(2*pi)) * tanh((2*pi*h)./L) -L;
plot(L,y);
0 comentarios
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!