Plotting the derivative of a non symbolically defined function

3 visualizaciones (últimos 30 días)
I've solved a second order nonlinear differential equation in matlab and would like to plot it's derivative:
my attempts so far:
syms phi(t)
figure
hold on
for v =1:10
[V] = odeToVectorField(diff(phi,2)== 28*(0.45-0.136)-(0.9)^2 * 0.45*1.21*sqrt(2)*v^2*sin(phi)*sin(pi/4-phi)/(4*0.25));
M = matlabFunction(V,'vars', {'t','Y'});
sol = ode45(M,[0 20],[0 5]);
fplot(@(x)deval(sol,x,1), [0, 20])
end
ddt = gradient(phi(:)) ./ gradient(t(:));
fplot(ddt)
Doing this returns an error. I've also tried
y =diff(phi)
fplot(y)
which just does nothing.
Any help would be great!
  2 comentarios
VBBV
VBBV el 8 de Nov. de 2020
Can you show the error ?
Louis Sharma
Louis Sharma el 8 de Nov. de 2020
hi,
Error:
Error using symfun/subsref
Invalid argument at position 2. Symbolic function indexing evaluates the function at the input arguments. To perform colon indexing call FORMULA before indexing.

Iniciar sesión para comentar.

Respuesta aceptada

Alan Stevens
Alan Stevens el 8 de Nov. de 2020
You could just do it totally numerically:
phi0 = 0;
dphidt0 = 5;
IC = [phi0 dphidt0];
tspan = 0:0.1:20;
v = 1:10;
phi = zeros(numel(tspan),numel(v));
dphidt = zeros(numel(tspan),numel(v));
for i = 1:numel(v)
[t, Y] = ode45(@(t,Y) odefn(t,Y,v(i)),tspan, IC);
phi(:,i) = Y(:,1);
dphidt(:,i) = Y(:,2);
lgndstr = sprintf('v = %2i \n',i);
lgnd(i,:) = lgndstr;
end
figure(1)
plot(t,phi),grid
xlabel('t'),ylabel('\phi');
legend(lgnd)
figure(2)
plot(t,dphidt),grid
xlabel('t'),ylabel('d\phi dt');
legend(lgnd)
function dYdt = odefn(~,Y,v)
phi = Y(1);
dphidt = Y(2);
dYdt = [dphidt;
28*(0.45-0.136)-(0.9)^2*0.45*1.21*sqrt(2)*v^2*sin(phi)*sin(pi/4-phi)/(4*0.25)];
end

Más respuestas (0)

Categorías

Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.

Productos


Versión

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by