Runge Kutta 4 method to solve second order ODE

6 visualizaciones (últimos 30 días)
Alina Li
Alina Li el 14 de Nov. de 2020
Comentada: Bruce Taylor el 22 de Oct. de 2023
Please help. I have been stuck at it for a while:
I am trying to solve a second order differential equation where U_dot= V and V_dot = d*U-c*U^3-b*V+a*sin(w*t)
Now I made the code (analytical part is meant for double checking myself, ignore it). My code gives an error saying "index exceeds array bounds". The loop refuses to accept anything other than for i = 1:1. How can I run this loop with Runge Kutta calculations?
Thank you!
w = 1.3;
dt = 2*pi/(w*100);
a= 0.25;
b=0.1;
c=1;
d = 1;
x0=1;
y0=0;
t=0:dt:5000;
transient = 4250;
tran_str= 300;
% %analytical
% w0=sqrt(-d);
% A=sqrt(x0^2+(y0/w0)^2);
% phi = atan(x0*w0/y0);
% xan = A*sin(w0*t+phi);
% yan = A*w0*cos(w0*t+phi);
%RK4
f1 = @(t,x,y) y;
f2 = @(t,x,y) d*x-c*x^3-b*y+a*sin(w*t);
h=dt
for i=1:length(t-1)
t(i+1) = t(i)+i*h;
k1x = f1(t(i),x0(i),y0(i));
k2x = f2(t(i)+0.5*h,x0(i)+0.5*k1y*h, y0(i)+0.5*k1y*h);
k3x = f2(t(i)+0.5*h,x0(i)+0.5*k2y*h, y0(i)+0.5*k2y*h);
k4x = f2(t(i)+0.5*h,x0(i)+0.5*k3y*h, y0(i)+0.5*k3y*h);
k1y = f2(t(i),x0(i),y0(i));
k2y = f2(t(i)+0.5*h,x0(i)+0.5*k1y*h, y0(i)+0.5*k1y*h);
k3y = f2(t(i)+0.5*h,x0(i)+0.5*k2y*h, y0(i)+0.5*k2y*h);
k4y = f2(t(i)+0.5*h,x0(i)+0.5*k3y*h, y0(i)+0.5*k3y*h);
y(i+1) = y0(i)+1/6*(k1y+2*k2y+2*k3y+k4y);
end
  3 comentarios
Alina Li
Alina Li el 14 de Nov. de 2020
Thank you for the question, it actually made me realize that I should have included it. I edited the code above. Unfrotunately, the same error persists.
Haya M
Haya M el 15 de Nov. de 2020
What do you mean by k1y in k2x and check the rest as well.

Iniciar sesión para comentar.

Respuestas (1)

Alan Stevens
Alan Stevens el 15 de Nov. de 2020
Editada: Alan Stevens el 15 de Nov. de 2020
Your integration loop is mightily scrambled. It should be like this
x(1) = x0;
y(1) = y0;
for i=1:length(t)-1
t(i+1) = i*h;
k1x = f1(t(i),x(i),y(i));
k1y = f2(t(i),x(i),y(i));
k2x = f1(t(i)+0.5*h,x(i)+0.5*k1x*h, y(i)+0.5*k1y*h);
k2y = f2(t(i)+0.5*h,x(i)+0.5*k1x*h, y(i)+0.5*k1y*h);
k3x = f1(t(i)+0.5*h,x(i)+0.5*k2x*h, y(i)+0.5*k2y*h);
k3y = f2(t(i)+0.5*h,x(i)+0.5*k2x*h, y(i)+0.5*k2y*h);
k4x = f1(t(i)+h,x(i)+k3x*h, y(i)+k3y*h);
k4y = f2(t(i)+h,x(i)+k3x*h, y(i)+k3y*h);
x(i+1) = x(i)+1/6*(k1x+2*k2x+2*k3x+k4x)*h;
y(i+1) = y(i)+1/6*(k1y+2*k2y+2*k3y+k4y)*h;
end
(However, I don't think your analytical solution is the solution to your equations.)
  1 comentario
Bruce Taylor
Bruce Taylor el 22 de Oct. de 2023
This is a beautiful solution. I modified it to analyze a series R-L-C circuit and compared the result to the exact solution...perfect match.
Bruce Taylor

Iniciar sesión para comentar.

Categorías

Más información sobre Loops and Conditional Statements en Help Center y File Exchange.

Productos


Versión

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by