Matlab Numerical integral issue

13 visualizaciones (últimos 30 días)
fatemeh kamali
fatemeh kamali el 12 de Mzo. de 2021
Comentada: Alan Stevens el 15 de Mzo. de 2021
Hi everyone.
I'm trying to solve the integral in the code below:
clc
clear all
%Enviroment Properties
f=15e9;
c=2.99792458e8;
lambda=c/f;
mu0=4*pi*1e-7;
eps0=1.0/c^2/mu0;
eta0=sqrt(mu0/eps0);
epsr=5;
omega=2*pi*f;
k0=omega*sqrt(mu0*eps0);
k2=omega*sqrt(mu0*eps0*epsr);
%square patch array properties
l=1.8e-3;
alpha_Ett=1.02*(l^3);
p=2e-3;
N=1/(p^2);
r=0.6956*p;
chieexx=(N*alpha_Ett)/(1-(N*alpha_Ett/(4*r)));
%source and observation points
z0=3e-3;
z=2e-3;
y=0;
for x=5e-6:1e-5:5e-3
pho=sqrt(x.^2+y.^2);
f1 = (@(kp) (kp.^3./(sqrt(k0^2-kp.^2))).* besselj(0,kp.*pho).* (((2*1i*(sqrt(k0^2-kp.^2)).*(k2^2))+ ((sqrt(k2^2-kp.^2)).*(((sqrt(k0^2-kp.^2))*(k2^2).*chieexx)+ ((k0^2)*(-2i+(sqrt(k0^2-kp.^2)).*chieexx)))))./((2*1i*(sqrt(k0^2-kp.^2)).*(k2^2))+ ((sqrt(k2^2-kp.^2)).*(((sqrt(k0^2-kp.^2)).*(k2^2).*chieexx)+ ((k0^2).*(2i+(sqrt(k0^2-kp.^2)).*chieexx)))))) .* exp(1i.*(sqrt(k0^2-kp.^2)).*(z+z0)) );
f2= (@(kp) (kp.^3./(sqrt(k0^2-kp.^2))).* besselj(0,kp.*pho).* exp(1i.*(sqrt(k0^2-kp.^2)).*(-z+z0)) );
I1= quadgk(f1,0,inf,'RelTol',1e-8);
I2= quadgk(f2,0,inf,'RelTol',1e-8);
E= (eta0/(4*pi*k0)).*(abs(I1+I2));
semilogy(x,abs(E),'Or')
hold on
end
set(gca,'FontSize',14,'LineWidth',3)
xlabel('x [m]');ylabel('|Ez| [V/m]')
But i get the following warning :
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 1.2e+03.
The integral may not exist, or it may be difficult to approximate numerically. Increase MaxIntervalCount to
1132 to enable QUADGK to continue for another iteration.
Could you please help me to improve my code.
Thanks in advance

Respuestas (1)

Alan Stevens
Alan Stevens el 13 de Mzo. de 2021
Editada: Alan Stevens el 13 de Mzo. de 2021
Your problem occurs when the upper limit of the integration exceeds k0. Are you sure the functions are defined correctly for that situation?
If the upper limit is taken as k0, the following code
%Enviroment Properties
f=15e9;
c=2.99792458e8;
lambda=c/f;
mu0=4*pi*1e-7;
eps0=1.0/c^2/mu0;
eta0=sqrt(mu0/eps0);
epsr=5;
omega=2*pi*f;
k0=omega*sqrt(mu0*eps0);
k2=omega*sqrt(mu0*eps0*epsr);
%square patch array properties
l=1.8e-3;
alpha_Ett=1.02*(l^3);
p=2e-3;
N=1/(p^2);
r=0.6956*p;
chieexx=(N*alpha_Ett)/(1-(N*alpha_Ett/(4*r)));
%source and observation points
z0=3e-3;
z=2e-3;
y=0;
%x = 5e-6:1e-4:5e-3;
x = logspace(-5.301,-2.301);
lo = 0; hi = k0; % Integration limits
for i = 1:numel(x)
pho=sqrt(x(i).^2+y.^2);
f1 = (@(kp) (kp.^3./(sqrt(k0^2-kp.^2))).* besselj(0,kp.*pho).* (((2*1i*(sqrt(k0^2-kp.^2)).*(k2^2))+ ((sqrt(k2^2-kp.^2)).*(((sqrt(k0^2-kp.^2))*(k2^2).*chieexx)+ ((k0^2)*(-2i+(sqrt(k0^2-kp.^2)).*chieexx)))))./((2*1i*(sqrt(k0^2-kp.^2)).*(k2^2))+ ((sqrt(k2^2-kp.^2)).*(((sqrt(k0^2-kp.^2)).*(k2^2).*chieexx)+ ((k0^2).*(2i+(sqrt(k0^2-kp.^2)).*chieexx)))))) .* exp(1i.*(sqrt(k0^2-kp.^2)).*(z+z0)) );
f2= (@(kp) (kp.^3./(sqrt(k0^2-kp.^2))).* besselj(0,kp.*pho).* exp(1i.*(sqrt(k0^2-kp.^2)).*(-z+z0)) );
I1= quadgk(f1,lo,hi);
I2= quadgk(f2,lo,hi);
E(i)= (eta0/(4*pi*k0)).*(abs(I1+I2));
hold on
end
semilogy(x,abs(E),'Or')
set(gca,'FontSize',14,'LineWidth',3)
xlabel('x [m]');ylabel('|Ez| [V/m]')
produces this result
  2 comentarios
fatemeh kamali
fatemeh kamali el 15 de Mzo. de 2021
Thanks for your answer Alan Stevens! Yes i am sure about the definition of the functions.
Alan Stevens
Alan Stevens el 15 de Mzo. de 2021
Then it looks like the only sensible numerical upper limit for your integrals is k0.

Iniciar sesión para comentar.

Categorías

Más información sobre Numerical Integration and Differentiation en Help Center y File Exchange.

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by