Esta página aún no se ha traducido para esta versión. Puede ver la versión más reciente de esta página en inglés.

Algoritmos de gráficas y redes

Gráficas dirigidas y sin dirigir, análisis de redes

Las gráficas modelan las conexiones de una red y se aplican ampliamente a una gran variedad de sistemas físicos, biológicos y de información. Es posible usar gráficas para modelar las neuronas de un cerebro, los patrones de vuelo de una línea aérea y mucho más. La estructura de una gráfica está compuesta de “nodos” y “bordes”. Cada nodo representa una entidad, y cada borde, una conexión entre dos nodos. Para obtener más información, consulte Directed and Undirected Graphs.

Funciones

expandir todo

graphGraph with undirected edges
digraphGraph with directed edges
addnodeAdd new node to graph
rmnodeRemove node from graph
addedgeAdd new edge to graph
rmedgeRemove edge from graph
flipedgeReverse edge directions
numnodesNumber of nodes in graph
numedgesNumber of edges in graph
findnodeLocate node in graph
findedgeLocate edge in graph
edgecountNumber of edges between two nodes
reordernodesReorder graph nodes
subgraphExtract subgraph
bfsearchBreadth-first graph search
dfsearchDepth-first graph search
centralityMeasure node importance
maxflowMaximum flow in graph
conncompConnected graph components
biconncompBiconnected graph components
condensationGraph condensation
bctreeBlock-cut tree graph
minspantreeMinimum spanning tree of graph
toposortTopological order of directed acyclic graph
isdagDetermine if graph is acyclic
transclosureTransitive closure
transreductionTransitive reduction
isisomorphicDetermine whether two graphs are isomorphic
isomorphismCompute isomorphism between two graphs
ismultigraphDetermine whether graph has multiple edges
simplifyReduce multigraph to simple graph
shortestpathShortest path between two single nodes
shortestpathtreeShortest path tree from node
distancesShortest path distances of all node pairs
adjacencyGraph adjacency matrix
incidenceGraph incidence matrix
laplacianGraph Laplacian matrix
degreeDegree of graph nodes
neighborsNeighbors of graph node
nearestNearest neighbors within radius
indegreeIn-degree of nodes
outdegreeOut-degree of nodes
predecessorsNode predecessors
successorsNode successors
inedgesIncoming edges to node
outedgesOutgoing edges from node
plotPlot graph nodes and edges
labeledgeLabel graph edges
labelnodeLabel graph nodes
layoutChange layout of graph plot
highlightHighlight nodes and edges in plotted graph

Objetos

GraphPlotGraph plot for directed and undirected graphs

Propiedades

GraphPlot PropertiesGraph plot appearance and behavior

Temas

Directed and Undirected Graphs

Introduction to directed and undirected graphs.

Graphs and Matrices

This example shows an application of sparse matrices and explains the relationship between graphs and matrices.

Modify Nodes and Edges of Existing Graph

This example shows how to access and modify the nodes and/or edges in a graph or digraph object using the addedge, rmedge, addnode, rmnode, findedge, findnode, and subgraph functions.

Add Graph Node Names, Edge Weights, and Other Attributes

This example shows how to add attributes to the nodes and edges in graphs created using graph and digraph.

Graph Plotting and Customization

This example shows how to plot graphs, and then customize the display to add labels or highlighting to the graph nodes and edges.

Label Graph Nodes and Edges

This example shows how to add and customize labels on graph nodes and edges.

Add Node Properties to Graph Plot Data Cursor

This example shows how to customize the GraphPlot data cursor to display extra node properties of a graph.

Visualize Breadth-First and Depth-First Search

This example shows how to define a function that visualizes the results of bfsearch and dfsearch by highlighting the nodes and edges of a graph.

Ejemplos destacados