Main Content

isstable

Determine whether filter is stable

Description

flag = isstable(b,a) returns a logical output equal to 1 if the specified filter is stable. Specify a filter with numerator coefficients b and denominator coefficients a.

example

flag = isstable(B,A,"ctf") returns 1 if the filter specified as Cascaded Transfer Functions (CTF) with numerator coefficients B and denominator coefficients A is stable. (since R2024b)

example

flag = isstable({B,A,g},"ctf") returns 1 if the filter specified in CTF format is stable. Specify the filter with numerator coefficients B, denominator coefficients A, and scaling values g across filter sections. (since R2024b)

example

flag = isstable(d) returns 1 if the digital filter d is stable. Use designfilt to generate d based on frequency-response specifications.

flag = isstable(sos) returns 1 if the filter specified by second order sections matrix sos is stable.

example

Examples

collapse all

Design a sixth-order Butterworth highpass IIR filter using second order sections. Specify a normalized 3-dB frequency of 0.7. Determine if the filter is stable.

[z,p,k] = butter(6,0.7,"high");
SOS = zp2sos(z,p,k);    
flag = isstable(SOS)        
flag = logical
   1

zplane(z,p)

Figure contains an axes object. The axes object with title Pole-Zero Plot, xlabel Real Part, ylabel Imaginary Part contains 4 objects of type line, text. One or more of the lines displays its values using only markers

Redesign the filter using designfilt and check it for stability.

d = designfilt("highpassiir",DesignMethod="butter",FilterOrder=6, ...
               HalfPowerFrequency=0.7);
dflg = isstable(d)
dflg = logical
   1

zplane(d)

Figure contains an axes object. The axes object with title Pole-Zero Plot, xlabel Real Part, ylabel Imaginary Part contains 4 objects of type line, text. One or more of the lines displays its values using only markers

Create a filter and determine its stability at double and single precision.

b = [1 -0.5];
a = [1 -0.999999999];
act_flag1 = isstable(b,a)
act_flag1 = logical
   1

act_flag2 = isstable(single(b),single(a))
act_flag2 = logical
   0

Since R2024b

Design a 40th-order lowpass Chebyshev type II digital filter with a stopband edge frequency of 0.4 and stopband attenuation of 50 dB. Verify that the filter is stable using the filter coefficients in the CTF format.

[B,A] = cheby2(40,50,0.4,"ctf");

flag = isstable(B,A,"ctf")
flag = logical
   1

Design a 30th-order bandpass elliptic digital filter with passband edge frequencies of 0.3 and 0.7, passband ripple of 0.1 dB, and stopband attenuation of 50 dB. Verify that the filter is stable using the filter coefficients and gain in the CTF format.

[B,A,g] = ellip(30,0.1,50,[0.3 0.7],"ctf");
flag = isstable({B,A,g},"ctf")
flag = logical
   1

Input Arguments

collapse all

Transfer function coefficients, specified as vectors.

Data Types: single | double

Since R2024b

Cascaded transfer function (CTF) coefficients, specified as scalars, vectors, or matrices. B and A list the numerator and denominator coefficients of the cascaded transfer function, respectively.

B must be of size L-by-(m + 1) and A must be of size L-by-(n + 1), where:

  • L represents the number of filter sections.

  • m represents the order of the filter numerators.

  • n represents the order of the filter denominators.

For more information about the cascaded transfer function format and coefficient matrices, see Specify Digital Filters in CTF Format.

Note

If any element of A(:,1) is not equal to 1, then isstable normalizes the filter coefficients by A(:,1). In this case, A(:,1) must be nonzero.

Data Types: double | single
Complex Number Support: Yes

Since R2024b

Scale values, specified as a real-valued scalar or as a real-valued vector with L + 1 elements, where L is the number of CTF sections. The scale values represent the distribution of the filter gain across sections of the cascaded filter representation.

The isstable function applies a gain to the filter sections using the scaleFilterSections function depending on how you specify g:

  • Scalar — The function distributes the gain uniformly across all filter sections.

  • Vector — The function applies the first L gain values to the corresponding filter sections and distributes the last gain value uniformly across all filter sections.

Data Types: double | single

Digital filter, specified as a digitalFilter object.

Second order sections, specified as a k-by-6 matrix where the number of sections k must be greater than or equal to 2. Each row of sos corresponds to the coefficients of a second order (biquad) filter. The ith row of the matrix corresponds to [bi(1) bi(2) bi(3) ai(1) ai(2) ai(3)].

Data Types: double

Output Arguments

collapse all

Logical output, returned as 1 or 0. If the poles lie on or outside the circle, the function returns 0. If the poles are inside the circle, the function returns 1.

Data Types: logical

More About

collapse all

Cascaded Transfer Functions

Partitioning an IIR digital filter into cascaded sections improves its numerical stability and reduces its susceptibility to coefficient quantization errors. The cascaded form of a transfer function H(z) in terms of the L transfer functions H1(z), H2(z), …, HL(z) is

H(z)=l=1LHl(z)=H1(z)×H2(z)××HL(z).

Specify Digital Filters in CTF Format

You can specify digital filters in the CTF format for analysis, visualization, and signal filtering. Specify a filter by listing its coefficients B and A. You can also include the filter scaling gain across sections by specifying a scalar or vector g.

Filter Coefficients

When you specify the coefficients as L-row matrices,

B=[b11b12b1,m+1b21b22b2,m+1bL1bL2bL,m+1],A=[a11a12a1,n+1a21a22a2,n+1aL1aL2aL,n+1],

it is assumed that you have specified the filter as a sequence of L cascaded transfer functions, such that the full transfer function of the filter is

H(z)=b11+b12z1++b1,m+1zma11+a12z1++a1,n+1zn×b21+b22z1++b2,m+1zma21+a22z1++a2,n+1zn××bL1+bL2z1++bL,m+1zmaL1+aL2z1++aL,n+1zn,

where m ≥ 0 is the numerator order of the filter and n ≥ 0 is the denominator order.

  • If you specify both B and A as vectors, it is assumed that the underlying system is a one-section IIR filter (L = 1), with B representing the numerator of the transfer function and A representing its denominator.

  • If B is scalar, it is assumed that the filter is a cascade of all-pole IIR filters with each section having an overall system gain equal to B.

  • If A is scalar, it is assumed that the filter is a cascade of FIR filters with each section having an overall system gain equal to 1/A.

Note

  • To convert second-order section matrices to cascaded transfer functions, use the sos2ctf function.

  • To convert a zero-pole-gain filter representation to cascaded transfer functions, use the zp2ctf function.

Coefficients and Gain

If you have an overall scaling gain or multiple scaling gains factored out from the coefficient values, you can specify the coefficients and gain as a cell array of the form {B,A,g}. Scaling filter sections is especially important when you work with fixed-point arithmetic to ensure that the output of each filter section has similar amplitude levels, which helps avoid inaccuracies in the filter response due to limited numeric precision.

The gain can be a scalar overall gain or a vector of section gains.

  • If the gain is scalar, the value applies uniformly to all the cascade filter sections.

  • If the gain is a vector, it must have one more element than the number of filter sections L in the cascade. Each of the first L scale values applies to the corresponding filter section, and the last value applies uniformly to all the cascade filter sections.

If you specify the coefficient matrices and gain vector as

B=[b11b12b1,m+1b21b22b2,m+1bL1bL2bL,m+1],A=[a11a12a1,n+1a21a22a2,n+1aL1aL2aL,n+1],g=[g1g2gLgS],

it is assumed that the transfer function of the filter system is

H(z)=gS(g1b11+b12z1++b1,m+1zma11+a12z1++a1,n+1zn×g2b21+b22z1++b2,m+1zma21+a22z1++a2,n+1zn××gLbL1+bL2z1++bL,m+1zmaL1+aL2z1++aL,n+1zn).

Tips

  • You can obtain filters in CTF format, including the scaling gain. Use the outputs of digital IIR filter design functions, such as butter, cheby1, cheby2, and ellip. Specify the "ctf" filter-type argument in these functions and specify to return B, A, and g to get the scale values. (since R2024b)

References

[1] Lyons, Richard G. Understanding Digital Signal Processing. Upper Saddle River, NJ: Prentice Hall, 2004.

Extended Capabilities

Version History

Introduced in R2013a

expand all