Capacidad de interpretación
Entrene modelos de regresión interpretables e interprete modelos de regresión complejos
Emplee modelos de regresión interpretables por naturaleza, por ejemplo, modelos lineales, árboles de decisión y modelos aditivos generalizados, o utilice las funcionalidades de interpretación para interpretar modelos de regresión complejos que no son interpretables por naturaleza.
Para saber cómo interpretar modelos de regresión, consulte Interpret Machine Learning Models.
Funciones
Objetos
LinearModel | Linear regression model |
RegressionGAM | Generalized additive model (GAM) for regression (desde R2021a) |
RegressionLinear | Linear regression model for high-dimensional data |
RegressionTree | Regression tree |
Temas
Interpretación de modelos
- Interpret Machine Learning Models
Explain model predictions using thelime
andshapley
objects and theplotPartialDependence
function. - Shapley Values for Machine Learning Model
Compute Shapley values for a machine learning model using interventional algorithm or conditional algorithm. - Introduction to Feature Selection
Learn about feature selection algorithms and explore the functions available for feature selection. - Use Partial Dependence Plots to Interpret Regression Models Trained in Regression Learner App
Determine how features are used in trained regression models by creating partial dependence plots.
Modelos interpretables
- Train Linear Regression Model
Train a linear regression model usingfitlm
to analyze in-memory data and out-of-memory data. - Train Generalized Additive Model for Regression
Train a generalized additive model (GAM) with optimal parameters, assess predictive performance, and interpret the trained model. - Train Regression Trees Using Regression Learner App
Create and compare regression trees, and export trained models to make predictions for new data.