Esta página aún no se ha traducido para esta versión. Puede ver la versión más reciente de esta página en inglés.

Los árboles de regresión

Arboles de decisión binarios para la regresión

Para hacer crecer interactivamente un árbol de regresión, use la aplicación.Alumno de regresión Para una mayor flexibilidad, haga crecer un árbol de regresión utilizando en la línea de comandos.fitrtree Después de hacer crecer un árbol de regresión, prediga las respuestas pasando el árbol y los nuevos datos predictores a .predict

Apps

Train regression models to predict data using supervised machine learning
Alumno de regresiónTrain regression models to predict data using supervised machine learning

Funciones

expandir todo

fitrtreeFit binary decision tree for regression
compactCompact regression tree
pruneProduce sequence of regression subtrees by pruning
cvlossRegression error by cross validation
plotPartialDependenceCreate partial dependence plot (PDP) and individual conditional expectation (ICE) plots
predictorImportanceEstimates of predictor importance for regression tree
viewView regression tree
crossvalCross-validated decision tree
kfoldfunCross validate function
kfoldPredictPredict response for observations not used for training
kfoldLossCross-validation loss of partitioned regression model
lossRegression error
resubLossRegression error by resubstitution
predictPredict responses using regression tree
resubPredictPredict resubstitution response of tree

Clases

RegressionTreeRegression tree
CompactRegressionTreeCompact regression tree
RegressionPartitionedModelCross-validated regression model

Temas

Train Regression Trees Using Regression Learner App

Create and compare regression trees, and export trained models to make predictions for new data.

Flujo de trabajo y algoritmos de aprendizaje supervisados

Comprender los pasos para el aprendizaje supervisado y las características de las funciones de clasificación y regresión no paramétricas.

Los árboles de decisión

Comprender los árboles de decisión y cómo ajustarlos a los datos.

Growing Decision Trees

To grow decision trees, fitctree and fitrtree apply the standard CART algorithm by default to the training data.

View Decision Tree

Create and view a text or graphic description of a trained decision tree.

Improving Classification Trees and Regression Trees

Tune trees by setting name-value pair arguments in fitctree and fitrtree.

Prediction Using Classification and Regression Trees

Predict class labels or responses using trained classification and regression trees.

Predict Out-of-Sample Responses of Subtrees

Predict responses for new data using a trained regression tree, and then plot the results.