Regresión no lineal
Modelos de regresión de efectos mixtos y fijos no lineales
En un modelo de regresión no lineal, la variable de respuesta no necesita expresarse como una combinación lineal de las variables predictoras y los coeficientes del modelo. Puede realizar una regresión no lineal con o sin el objeto NonLinearModel o usando la herramienta interactiva nlintool.
Funciones
Objetos
| NonLinearModel | Nonlinear regression model | 
Temas
Modelos no lineales
- Nonlinear Regression
 Parametric nonlinear models represent the relationship between a continuous response variable and one or more continuous predictor variables.
- Nonlinear Regression Workflow
 Import data, fit a nonlinear regression, test its quality, modify it to improve the quality, and make predictions based on the model.
- Weighted Nonlinear Regression
 This example shows how to fit a nonlinear regression model for data with nonconstant error variance.
- Pitfalls in Fitting Nonlinear Models by Transforming to Linearity
 This example shows pitfalls that can occur when fitting a nonlinear model by transforming to linearity.
- Nonlinear Logistic Regression
 This example shows two ways of fitting a nonlinear logistic regression model.
Efectos mixtos
- Mixed-Effects Models
 Mixed-effects models account for both fixed effects (which represent population parameters, assumed to be the same each time data is collected) and random effects (which act like additional error terms).
- Mixed-Effects Models Using nlmefit and nlmefitsa
 Fit a mixed-effects model, plot predictions and residuals, and interpret the results.
- Examining Residuals for Model Verification
 Examine thestatsstructure, which is returned by bothnlmefitandnlmefitsa, to determine the quality of your model.